
Copyright © 2004 Institute for System Programming, Russian Academy of Sciences

Moscow 2004

Using CTesK 2.1 with GCC
Getting started

Contents

Introduction ...1

Format conventions ...1

Other documents..2

An example of system under test: Bank credit account ...3

Specification of Bank credit account example ..4

Mediators of Bank credit account example...10

Test scenario of Bank credit account example..12

Running test of Bank credit account example ..15

Test result analysis of Bank credit account example ...17
Text test report generation...17

Summarized scenario report ..17

Detailed scenario report...17

Summarized function coverage report...18

Detailed function coverage report ...19

Summarized failure report ...22

Detailed failure report..22

Appendix A: Using CTesK with GCC compiler ..25

Using GNU Make to Build Test ..25

Test Execution ...25

Test Report Generation..26

Using CTesK 2.1 with GCC: Getting Started

Introduction

This document is intended to introduce the basic concepts of CTesK. It provides an example of
test development with the help of the tool. It contains a quick overview of the SeC language
concepts and syntax to help getting started with test developing in CTesK environment.

CTesK is an implementation of UniTesK test development method, which amplifies industrial
test development with a variety of cutting-edge technologies based on formal methods including
specification based testing.

UniTesK supports automated development for functional testing. Functional testing provides
checking whether software behavior is proper or not. In other words functional testing checks
conformance of the software to its functional requirements.

Any software provides some interface through which it communicates with an environment.
Functional requirements do not describe the way how the system should be implemented. They
define what externally observable effects the system must produce when interacting with the
environment by means of an interface of the system. System behavior conforms to its functional
requirements if any effect that is being observed complies with the functional requirements.

Functional test development automation is possible only if functional requirements are specified
in a strong formal way. “Formal” means written in a computer readable form that has a unique
interpretation. It is not bound to difficult mathematics or theoretical considerations. The
difference between informal and formal specifications of functional requirements is likewise
difference between natural and programming languages rather than between programming and
mathematics languages.

To implement UniTesK method for C software, CTesK uses SeC (pronounced as [sek]) language
— specially developed Specification Extension of C programming language. SeC extends ANSI
C with notation for preconditions, postconditions and coverage criteria as well as defining
mediators and test scenarios. The main goal is to allow test developers to define and generate
components that can be easily composed into a wide range of complete and effective tests, and
yet to perform intensive reuse of specifications and scenarios.

CTesK toolkit includes the translator of SeC to C, the library of test system support, the
specification type library and the test report generator.

The translator of SeC to C allows the generation of test components from specifications,
mediators and test scenarios. The library of test system support provides the test engine that
implements in C the algorithms of building test sequences and support for tracing test execution.
The specification type library supports the types integrated with standard functions of creation,
initialization, copying, comparison and destroying data of these types. Also the specification type
library includes a set of already defined specification types. The test report generator provides
ability of automatic analyzing test trace and generation of various informative reports from it.

Format conventions
Italic font emphasizes the terms for the main concepts or clauses containing important ideas.
“Double quoted italic font” emphasizes references to other documents from the CTesK
documentation set.

 1

Using CTesK 2.1 with GCC: Getting Started
Source code examples are presented in preformatted paragraphs.

Monospaced font emphasizes code elements dispersed in the text. SeC keywords are
emphasized with monospace bold font.
Bold font marks file names and commands.

Other documents
More information on CTesK and related test development method can be found in other
documents included in CTesK 2.1 documentation set: “CTesK 2.1: User Guide” and
“CTesK 2.1: SeC Language Reference”. Also UniTesK web site http://www.unitesk.com/
contains information about UniTesK itself, CTesK and others tools supporting UniTesK.
For additional information and questions, please contact e-mail address support@unitesk.com.

 2

http://unitesk.ispras.ru/
mailto:support@unitesk.com

Using CTesK 2.1 with GCC: Getting Started

An example of system under test:
Bank credit account

The document presents test development process using CTesK tool on the example of test
development for a system that implements the functionality of a bank credit account: money
deposition and money withdrawal. The account provides an option for a credit with preset
maximum credit.

If you have not installed CTesK 2.1 in your system, before further reading this document, please,
turn to “CTesK Installation and Usage Instructions” and install CTesK 2.1.

The implementation of a bank credit account is located in the account.c file in the
examples/account1 directory of the CTesK tree. An account itself is implemented as a structure
Account defined in examples/account/account.h.

typedef struct Account {
 int balance;
} Account;

The implementation to be tested is located in the file examples/account/account.c.
The interface of the system consists of two functions:

o void deposit(Account *acct, int sum) — deposits a positive amount sum to the
account by increasing the balance of the account with the given amount;

o int withdraw(Account *acct, int sum) — withdraws a positive amount sum from
the account and returns the actually withdrawn amount, by which the account balance is
decreased. If the difference between the current balance and the amount sum is out of the
permissible credit, the method does not change balance of the account and returns 0. A
maximal value of the credit is defined by macro MAXIMUM_CREDIT in account.h. It should
not be negative.

Our objective is to develop test for this system employing CTesK tool, run the test and analyze
the obtained results.

The next sections describe the development of the test. It includes the following steps:
o Development of a specification of the system under test
o Development of mediators
o Development of a test scenario
o Test execution and analysis of test results.

1 For Windows platforms slashes ‘/’ in paths should be replaced by back-slashes ‘\’.

 3

Using CTesK 2.1 with GCC: Getting Started

Specification of
Bank credit account example

The UniTesK test development method supported by the CTesK tool assumes that the functional
requirements should be represented in a clear, unambiguous and computer readable form, which
is called formal specifications. Due to formal representation it is possible to use specifications to
generate programs that verify the compliance of the real behavior of interface functions with the
requirements stipulated for them.

In CTesK formal specifications are written in a special language named SeC2, which is an
extension of C programming language. SeC allows describing of the functional requirements that
determine the functionality of interface functions, i.e. what the system must do when call of its
interface function takes place.

Specifications in SeC language have C-like syntax. Files with the SeC code have .sec or .seh
extensions.

The specification of the account example can be found in the account_model.sec file located in
the examples/account directory of the CTesK tree.
The account specification starts with including the account_model.seh header file located in
examples/account:

#include <limits.h>
#include "account.h"

extern invariant int MaximalCredit;

invariant typedef Account AccountModel;

specification void deposit_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates balance = acct->balance
;

specification int withdraw_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates balance = acct->balance
;

The account_model.seh contains an including files limits.h and account.h and the declarations
of extern variable with invariant, type with invariant and specification functions.
The limits.h file is included to allow using the INT_MAX constant.
The account.h file is included to allow using the MAXIMUM_CREDIT constant and the Account
structure type defined in it:

2 Pronounced as [sek]

 4

Using CTesK 2.1 with GCC: Getting Started
#define MAXIMUM_CREDIT 3

typedef struct Account {
 int balance;
} Account;

The Account type represents an account as a structure with a single field of int type. When
balance is negative its absolute value should not exceed the limit defined by macro
MAXIMUM_CREDIT. To describe this requirement in the account_model.seh file the
AccountModel type is declared as the typedef of Account type with invariant. The invariant is
defined in account_model.sec:

invariant (AccountModel acct) { return acct.balance >= -MaximalCredit; }

It returns true, if a value of the balance field of verified structure meets the requirement, and
false otherwise. The invariant should be held before and after calling interface functions, which
use data of the type having constraints described in the invariant. Thus an invariant encapsulates
common parts of constraint specifications of these interface functions.

Because the set of valid values of the AccountModel type does not coincide with the value set of
the Account structure, the AccountModel type is a subtype of the Account type.

The MaximalCredit variable with invariant is declared in the account_model.sec file. In the
same file its invarint is defined.

invariant (MaximalCredit) { return MaximalCredit >= 0; }

The invariant of the MaximalCredit variable describes the requirement to the maximal value of
the credit — it should not be negative. The variable invariant should be held before and after any
calls of any interface functions.
Further constraints on the system behavior are described in special functions marked with the
keyword specification. They are called specification functions.
The deposit_spec specification function is correspondent to the deposit interface function.
This interface function does not return any result and has two parameters. The first one is a
non-null pointer to the Account structure that represents an account to which money should be
deposited. The second parameter of int type is an amount of money to deposit. The function
should read the second parameter and update the balance field of the structure pointed by the
first parameter: after the call the balance field should be increased exactly by the number passed
in the second parameter. Besides, the value of the second parameter should be more than zero
and should not be too large to cause overflow in the balance field after increasing.

In SeC these requirements are described in the following specification function deposit_spec.
specification void deposit_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates balance = acct->balance
{
 pre { return (acct != NULL) && (sum > 0) && (balance <= MAX_INT - sum); }

 coverage C {
 if (balance + sum == MAX_INT); return {maximum, "Maximal deposition"};
 else if (balance > 0) return {positive, "Positive balance"};
 else if (balance < 0)
 if (balance == -MaximalCredit) return {minimum, "Minimal balance"};
 else return {negative, "Negative balance"};
 else return {zero, "Empty account"};
 }
 post { return balance == @balance + sum; }
}

 5

Using CTesK 2.1 with GCC: Getting Started

The definition of specification function begins with the signature:
specification void deposit_spec (AccountModel *acct, int sum)

The signature of any specification function should contain a keyword specification. Besides
the name the signature of the deposit_spec specification function differs from the signature of
the deposit implementation function only in the type of the first parameter. It is a pointer to the
AccountModel type, which is a subtype of the Account type.

After the signature access restrictions follow.
specification void deposit_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates balance = acct->balance

They show that when the deposit function is called
o the system’s behavior depends on the value of the MaximalCredit variable3, and its

value should not be changed after the call;
o the system’s behavior depends on the value of balance field of the structure referenced

by acct parameter, and its value can be changed after the call.
In addition access restriction of the balance field defines an alias of the mentioned field. The
alias is used in the body of the specification function to simplify and clarify expressions.
The keyword reads specifies “read only” access restriction, i.e. the values of parameters and
variables under the reads access restriction should not be changed as a result of the call of the
described function.

In SeC like as in C, any change of values of the arguments passed by value cannot be visible
outside the function, i.e. these parameters always have the reads access restriction.

Unlike C, parameters passed trough pointers are interpreted more strictly. If a pointer is not of
the void* type it is considered as a pointer to a single value of pointed type, not an array of
values 4. Pointers to the void type are interpreted as just values of an address, paying no attention
to content of memory referred by these pointers.

At run-time CTesK checks that values referenced by pointers with the reads access restriction
are not changed right after each call of the corresponding interface function. Also CTesK
provides automatic run-time checking for the values of reads parameters and variables against
their invariants, if any, before each call of the corresponding interface function.

The keyword updates specifies “read-write” access restriction, i.e. the values of parameters and
variables under the updates access restriction may be changed as a result of the call of the
described function. In SeC like as in C, the externally visible value of the argument may be
changed only if it is passed through a pointer. But in SeC, it must be considered strongly as a
pointer to a single value of the corresponding type.

CTesK provides an automatic run-time checking for values of updates parameters and variables
against their invariants, if any, before and after each call of the corresponding interface function.
By default, all parameters of a specification function have “read-write” access restriction.

3 In accordance to the requirements the behavior of the system under test is defined only when a maximal credit is
no t negative, this requirement is described in the MaximalCredit variable invariant. For automatic checking the
variable invariant before pre- and postcondition checking the variable access restriction should be described in the
corresponding specification functions.
4 To specify the function with the dynamic arrays as arguments one should use containers of specification types. For
details see “CTesK 2.1: Users’ Guide” and “CTesK 2.1: SeC Language Reference”

 6

Using CTesK 2.1 with GCC: Getting Started

The body of the deposit_spec specification function describes the behavior of the system under
test when calling the deposit interface function. The body contains a description of functional
requirements in the form of pre- and postconditions and coverage criteria.
When calling the deposit interface function the pointer to an account structure should be
non-null, an amount of money to be deposited should be positive and the sum of the current
balance and the second parameter should not exceed the maximum value of the int type. In SeC
it is described in the precondition.

pre { return (acct != NULL) && (sum > 0) && (balance <= MAX_INT - sum); }

It is a block statement marked with the pre keyword. The precondition returns true if input
values of parameters are valid and false otherwise. Thus precondition specifies definition
domain of the function. If input parameters’ values do not belong under it, the behavior of the
function is undefined.
Precondition should have no side effects. No more than one precondition can be defined in a
specification function. It should be located before coverage criteria and postcondition. If there
are no constraints on input values the precondition may be omitted.
After the deposit interface function call the account balance should be equal to the account
balance prior to the function call increased by the sum amount. In SeC these requirements are
described in the postcondition.

post { return balance == @balance + sum; }

It is a block statement marked with the post keyword. The postcondition returns true if input
and output values of the function call conform to the functional requirements, and false
otherwise. Thus it verifies that the function behaves correctly.
A special unary operator @ is used in the postcondition to get access to the input value of the alias
of the balance field. That is, in the postcondition 'balance' denotes the output value of the alias
of the balance field, and '@balance' denotes the input value.
This operator is applicable to expressions inside the post block statement only. The keyword
post defines the point where the corresponding implementation function is called. In the body of
a specification function expressions located before the post keyword are evaluated before the
implementation function call. Expressions located after the post keyword are evaluated after the
call except for expressions under @ operator that are evaluated before the implementation
function call.
Postcondition should have no side effects. The specification function should have exactly one
postcondition. It should follow precondition and coverage criteria, if any.
According to the requirements the deposit function has the uniform behavior on the whole
function definition domain. It is rather reasonable assumption that the behavior of any
implementation of the deposit function does not depend of the absolute value of the current
balance and an amount of money to be deposited. But it may depend of the sign of the current
balance. Also the function behavior should be tested when the parameters’ values are on the
boundaries of sets of their allowable values. Therefore coverage criterion of the deposit
specification function distinguishes five different test situations.

coverage C {
 if (balance + sum == MAX_INT) return { maximum, "Maximal deposition" };
 else if (balance > 0) return { positive, "Positive balance" };
 else if (balance < 0)
 if (balance == -MAXIMUM_CREDIT) return {minimum, "Minimal balance"};
 else return { negative, "Negative balance" };
 else return { zero, "Empty account" };
}

 7

Using CTesK 2.1 with GCC: Getting Started

The function behavior should be tested in each situation defined in the coverage criterion.

The coverage criterion is a named block statement marked with the coverage keyword. It
defines the partition of the function behavior into branches — functional branches. Each branch
is defined by the return operator with a construct similar to the structure variable initialization
construct in C. It should contain an identifier as the first field— branch identifier, and a string
literal as the second field — branch name.

The partition defined by the coverage block should be complete and unambiguous, i.e. each
allowable set of input parameters’ values should correspond to a single functional branch.

In a specification function several coverage criteria with different names can be defined. The
coverage blocks should be located after precondition and before postcondition. They should
have no side effects. If no coverage blocks are defined, it is equivalent to a coverage criterion
with a single functional branch.

The withdraw_spec specification function is correspondent to the withdraw interface function.
specification int withdraw_spec (AccountModel *acct, int sum)
reads MaximalCredit
updates balance = acct->balance {
 pre { return (acct != NULL) && (sum > 0); }
 coverage C {
 if (sum == INT_MAX) return {max, "Maximal withdrawal"};
 if (balance > 0)
 if (balance < sum - MaximalCredit)
 return {pos_too_large, "Positive balance. Too large withdrawal"};
 else
 return {positive_ok, "Positive balance. Successful withdrawal"};
 else if (balance < 0)
 if (balance >= sum - MaximalCredit)
 return {neg_too_large, "Negative balance. Too large withdrawal"};
 else
 return {negative_ok, "Negative balance. Successful withdrawal"};
 else
 if (balance < sum - MaximalCredit)
 return {zero_too_large, "Empty account. Too large withdrawal"};
 else
 return {zero_ok, "Empty account. Successful withdrawal"};
 }
 post {
 if (balance >= sum - MaximalCredit)
 return balance == @balance - sum && withdraw_spec == sum;
 else
 return balance == @balance && withdraw_spec == 0;
 }
}

The withdraw interface function returns a value of the int type and has two parameters. The
first one is a non-null pointer to the Account structure from which money should be withdrawn.
The second parameter is a number of int type that is an amount of money to withdraw. The
function should read the second parameter and update the balance field of the structure pointed
by the first parameter. If the requested withdrawal does not lead to the maximum credit
overcome, then the balance field after the call should be decreased exactly by the number
passed in the second parameter. Otherwise the balance field should not be changed. The
function should return the withdrawn sum in the case of successful withdrawal or 0 otherwise.

The precondition states that the acct pointer should be non-null and the sum amount to withdraw
should be positive.

 8

There are two main use cases of the withdraw function — when the withdrawal of the amount
given is possible and when it is impossible. In the coverage C block the functionality is

Using CTesK 2.1 with GCC: Getting Started

partitioned into the seven branches. This criterion specifies that each use case should be tested
with the current balance values from different subsets of its definition domain — especially on
the domain boundaries.

The postcondition divided into two cases: when the withdrawal of the amount given is possible
and when the withdrawal of the amount given is impossible. In the first case the postcondition
tells that the balance should be reduced by the sum value and the function should return sum. In
the second case the postcondition tells that the balance should not be changed and the function
should return 0. A function identifier is used to refer to the result returned by the function, in the
given example it is withdraw_spec.

In order to obtain the components that check the calls of the specified interface functions, the
specification should be translated into C code.

To translate the account_model.sec file into C code on Unix platforms launch command shell,
go to the examples/account folder in the CTesK tree and run the command
>sec.sh account_model.sec account_model.c account_model.sei
On Windows platforms one should run the following command in the examples\account
directory of the CTesK tree
>sec.bat account_model.sec account_model.c account_model.sei
As a result of the translation the account_model.c file should be generated in
examples/account.

 9

Using CTesK 2.1 with GCC: Getting Started

Mediators of
Bank credit account example

An implementation of the bank credit account and its specification should be bound to enable the
test to check their conformance to each other.
In UniTesK method, special components called mediators are used for this purpose.

In SeC mediators are implemented by special mediator functions marked with the keyword
mediator.

The mediators for the account example can be found in the account_mediator.sec file located in
the examples/account directory of the CTesK tree.

The account_mediator.sec file starts with including the account_mediator.seh file located in
examples/account.

#include "account_model.seh"

mediator deposit_media for
specification void deposit_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates acct->balance
;
mediator withdraw_media for
specification int withdraw_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates acct->balance
;

Besides the forward declarations of the mediators functions this header file also contains
including the account_model.seh specification header file that in turn includes the account.h
implementation header file. Thus mediators are able to deal with both the implementation and
the specification.

The account_mediator.sec file contains the definition of two mediator functions.
mediator deposit_media for
specification void deposit_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates acct->balance
{
 call { deposit (acct, sum); }
}

mediator withdraw_media for
specification int withdraw_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates acct->balance
{
 call { return withdraw (acct, sum); }
}

 10

Using CTesK 2.1 with GCC: Getting Started

The first one provides binding between the deposit_spec specification function and the
deposit interface function of the implementation. The second binds the withdarw_spec
specification function to the withdraw interface function of the implementation.

The signature of a mediator function should contain the mediator keyword, the mediator
function name, the for keyword and the signature and access restrictions of the specification
function to be bound.

The body of a mediator function for a specification function must contain a block statement
marked with the call keyword.

The call block implements the functionality described in the corresponding specification
function by means of calling the corresponding interface function of the implementation. It
means that

o the parameters of the mediator function, which are the actual parameters of the
specification function ones, should be transformed to the parameters of the interface
implementation function;

o the obtained values of the parameters should be passed the interface implementation
function;

o and the returned value and the output values of the parameters changed in the result of
the call should be transformed to the value returned by the mediator function and the
output values of the corresponding mediator function parameters.

To translate the account_mediator.sec file into C code on Unix platforms launch command
shell, go to the examples/account folder in the CTesK tree and run the command
>sec.sh account_mediator.sec account_mediator.c account_mediator.sei
On Windows platforms one should run the following command in the examples\account
directory of the CTesK tree
>sec.bat account_mediator.sec account_mediator.c account_mediator.sei
As a result of the translation the account_mediator.c file should be generated in
examples/account.

 11

Using CTesK 2.1 with GCC: Getting Started

Test scenario of
Bank credit account example

Specifications provide a formal description of the functionality of a system under test.
Components that check individual calls of the specified interface functions are generated basing
on them. Mediators provide binding between the specification and the implementation under test.
They allow testing different implementations of the same functionality using the same
specifications.

To check the behavior of the system under test in various conditions, relevant sequence of calls
to interface functions should be built. In CTesK test sequences are built automatically by test
engine. Test engine should be given by a short description of the test called test scenario.

The scenario of the account example can be found in the account_scenario.sec located in the
examples/account directory of the CTesK tree.

#include "account_mediator.she"
#include <atl/integer.h>

AccountModel Acct;

static bool account_init (int argc, char **argv) {
 Acct.balance = 0;
 set_mediator_deposit_spec (deposit_media);
 set_mediator_withdraw_spec (withdraw_media);
 return true;
}

static Integer* account_state() { return create_Integer(Acct.balance); }

scenario bool deposit_scen() {
 if (Acct.balance <= 5) {
 iterate (int i = 1; i <= 5; i++;) deposit_spec(&Acct, i);
 }
 return true;
}
scenario bool withdraw_scen() {
 iterate (int i = 1; i <= 5; i++;) withdraw_spec(&Acct, i);
 return true;
}

scenario dfsm account_scenario = {
 .init = account_init,
 .getState = account_state,
 .actions = { deposit_scen, withdraw_scen, NULL }
};

As far as the implementation, specifications and mediators are used, the corresponding header
files should be included into the scenario. Since the account.h file is included into the
account_model.seh file, which in turn is included into the account_mediator.seh file, only the
last header file is included into the account_scenario.sec file.

 12

The scenario is developed to test the account system with the only instance of the account
structure. The instance is implemented as a global variable of the scenario.

Using CTesK 2.1 with GCC: Getting Started
AccountModel acct;

Next the test initialization function follows.
static bool account_init (int argc, char **argv) {
 Acct.balance = 0;
 set_mediator_deposit_spec (deposit_media);
 set_mediator_withdraw_spec (withdraw_media);
 return true;
}

The account_init function initializes the test scenario state setting the balance field to 0, sets
the mediators of the specification functions of the scenario and returns true. The functions
set_mediator_deposit_spec and set_mediator_withdraw_spec are used to set the mediator
functions for the corresponding specification functions.

A function that sets a mediator of the specification function is implicitly defined when defining
the specification function. It has a name set_mediator_<specification function name>.

The account_state function defines a set of states which are considered as different in the test
scenario. In the account test scenario states are different when values of account balance are
different.

#include <atl/integer.h>
...
static Integer* account_state() { return create_Integer(acct.balance); }

The behavior of the system under test should be tested in various situations. In other words the
test should call the interface functions in different scenario states. In the scenario of the account
example test situations are distinguished by the current value of the balance. Therefore the
scenario state is defined as an integer value of acct.balance. CTesK requires a scenario state
type to be a specification type. In the account example the scenario state type is the library
integer specification type that is defined in the atl\integer.h header file.

In each reachable scenario state the test should check behavior of each function in each
functional branch available in the state. In CTesK a set of simple test actions that will be
performed by the test engine in each reachable scenario state is defined in scenario functions. In
the account example there are two scenario functions.

scenario bool deposit_scen() {
 if (Acct.balance <= 5)
 iterate (int i = 1; i <= 5; i++;) deposit_spec(&Acct, i);
 return true;
}

scenario bool withdraw_scen() {
 iterate (int i = 1; i <= 5; i++;) withdraw_spec(&Acct, i);
 return true;
}

The deposit_scen function is intended for testing of the deposit function. The
withdraw_scen function is intended for testing of the withdraw function. They are named
deposit_scen and withdraw_scen respectively.

The iterate(;;;) statement is used to enumerate the actions. Its syntax is similar to for(;;)
statement except the last additional field that is a filtration condition. In the body of an iterate
statement actions to be performed are defined. Iterate statements can be nested one within
another.

Both scenario functions have similar structure. They iterate an integer value and call the
corresponding specification function passing the pointer to the account structure and the iterated
value as its arguments. The only difference is a stop condition appeared in the deposit_scen

 13

Using CTesK 2.1 with GCC: Getting Started

scenario function. It is intended to prevent test engine from infinite or simply too big number of
deposit_spec function calls — without stop condition the balance will grow until INT_MAX. The
stop condition states that the deposit_spec function should be called only if the balance value is
less than or equal to 5. The withdraw_spec function does not require a stop condition because it
has natural limitation — the maximal possible credit value.

Scenario functions can perform additional checks of behavior of the system under test, which are
based on additional knowledge of the scenario about an environment state. The result of this
checking should be returned.

In the account example all requirements are described in the specification, hence there is no
necessity for additional checks. Therefore the scenario functions return the true value.

Finally the scenario itself is defined.
scenario dfsm account_scenario = {
 .init = account_init,
 .getState = account_state,
 .actions = { deposit_scen, withdraw_scen, NULL }
};

In SeC test scenario is defined by the declaration of the global variable marked with the keyword
scenario. The type of the global variable corresponds to the type of test engine used by the
scenario. In the scenario of the account example test engine of the dfsm type is used5:

This type is a structure with the following fields:

o init is a pointer to the function of the type bool (*PtrInit)(int, char**);

o state is a pointer to the function of the type Object* (*PtrGetState)(void),
Object is a special specification library type, the reference of any specification type can
be used as the reference of the Object type without an explicit cast;

o actions is an array of pointers to scenario functions ended by NULL;

o finish is a pointer to the function of the type void (*PtrFinish)(void).

The init field is initialized by the account_init function.

The getState is initialized by the account_state function.

The actions field is initialized by the array containing two scenario functions — deposit_scen
и withdraw_scen.

The finish field should be initialized with the pointer to the function that finalizes the test. The
scenario of the account example does not need finalization actions. Therefore the finish field is
not initialized.

To translate the account_scenario.sec file into C code on Unix platforms launch command shell,
go to the examples/account folder in the CTesK tree and run the command
>sec.sh account_scenario.sec account_scenario.c account_scenario.sei

On Windows platforms one should run the following command in the examples\account
directory of the CTesK tree
>sec.bat account_scenario.sec account_scenario.c account_scenario.sei
As a result of the translation the account_scenario.c file should be generated in
examples/account.

5 It is the only type of test engine implemented in the current version of CTesK.

 14

Using CTesK 2.1 with GCC: Getting Started

Running test of
Bank credit account example

The last component of the account example can be found in the account_main.sec file located in
the examples/account directory of the CTesK tree. It contains definition of the main function
that obtains command line arguments of the test and launches the test scenario with these
arguments. The scenario is declared in the account_scenario.seh header file.

#include "account_scenario.seh"

int main (int argc, char **argv) {
 account_scenario(argc, argv);
 return 0;
}

The header file account_scenario.seh contains the declaration of the extern scenario
account_scenario.

extern scenario dfsm account_scenario;

The main function starts the scenario with the command line options as its arguments.
account_scenario(argc, argv);

To translate the account_main.sec file into C code on Unix platforms launch command shell, go
to the examples/account folder in the CTesK tree and run the command
>sec.sh account_main.sec account_main.c account_main.sei
On Windows platforms one should run the following command in the examples\account
directory of the CTesK tree
>sec.bat account_main.sec account_main.c account_main.sei
As a result of the translation the account_main.c file should be generated in examples/account.

The next step is compiling all C files to object files and linking them into the executable file.
This task is performed by standard for C compiler used way. The only additional requirement is
to link the CTesK static libraries to the executable file. These libraries are atl.lib, ts.lib,
tracer.lib and util.lib. They are placed in the lib directory of the CTesK tree.

To build the executable file by means of GCC one should run in the examples/account directory
of the CTesK tree the GNUmake
>make

As a result, the executable file account (or account.exe) should be built.

The command line options of the test are passed by the main function to the test scenario. The
standard options of test scenario are the following:

-t <file-name> — trace will be directed the file '<file-name>'

-tc — trace will be directed the console

-tt — trace will be directed the file
'<scenario-name>--YY-MM-DD--HH-MM-SS.trace'

 15

Using CTesK 2.1 with GCC: Getting Started

Test scenario processes standard arguments and passes the rest to an initialization function of the
test scenario.

Let’s run the executable file with parameters directing trace to the trace.xml file.

On Unix platforms go to the directory containing the executable file (examples/account) and run
the command:
>account –t trace.xml
On Windows platform go to the folder containing the executable file (examples\account) and
run the command:
>account.exe –t trace.xml
As a result of the test execution the trace.xml file should be generated.

 16

Using CTesK 2.1 with GCC: Getting Started

Test result analysis of
Bank credit account example

Text test report generation
To generate report on UNIX platforms launch command shell, go to the directory containing the
trace file (examples/account) and run the command
>ctesk-rg.sh trace.report trace.xml
To generate report on Windows platforms launch command shell, go to the folder containing the
trace file (examples\account) and run the command
>ctesk-rg.bat –d trace.report trace.xml
As a result, the directory trace.report should be generated.

Open in the directory trace.report the file scenarios.html to see the start page of the report set.
The reports’ navigation bar is placed on the left side of the start page.

Summarized scenario report
The start page contains a summarized test report. It shows how many states and transitions were
visited and how many fails were detected for each scenario.

Figure 1. The summarized test report.

In the account example the only scenario is available. It has visited 14 states and 115 transitions.
No fails were detected.

Detailed scenario report
A detailed scenario report can be opened by the scenario name link. It describes all states and
transitions visited during the test scenario execution. The first three columns of the table describe
transitions. The last one shows the total number of hits and the number of failures detected on
the transition given.

 17

Using CTesK 2.1 with GCC: Getting Started

Figure 2. The detailed scenario report.

For instance, there are ten transitions started from the test scenario state –1 in the account
example. The test scenario state was defined as the current value of the balance in the. Therefore
this state corresponds to the balance value –1.

The transition marked deposit_scen(int i = 1) leads to the state 0. The mark shows the
transition is performed by call of the scenario function deposit_scen with the value of the
iterated variable i equal to 1. This transition was performed 13 times and no failures were
detected.

Summarized function coverage report
A summarized function coverage report can be opened by the All functions link. It shows a
percentage of branch coverage for each tested function.

 18

Using CTesK 2.1 with GCC: Getting Started

Figure 3. The summarized function coverage report.

There are two specification functions in the account example. The both of them have one
coverage called C. The account_scenario scenario has covered four of five branches of the
deposit_spec function and six of seven branches of the withdraw_spec function.

Detailed function coverage report
A detailed function coverage report can be opened by the function name link. It includes
information about a number of hits and fails in each branch of the function given.

Figure 4. The detailed function coverage report of deposit_spec function

The report of the deposit_spec function shows that the deposit_spec function was called with
arguments corresponding to Positive balance, Minimal balance, Negative balance and
Empty account branches — 246, 10, 31 and 32 times respectively. No calls were performed
with the arguments corresponding to Maximal deposition.

 19

Using CTesK 2.1 with GCC: Getting Started

Figure 5 The detailed function coverage report of withdraw_spec function.

The report of the withdraw_spec function shows the withdraw_spec function was called with
arguments corresponding to all branches besides Maximal withdrawal branch.

To ensure complete coverage of the branches of the deposit_spec and withdraw_spec function
two new scenario functions should be defined in the scenario. They should provide the parameter
values to maximal deposition and maximal withdrawal.

scenario bool deposit_max_scen() {
if (0 < acct.balance && acct.balance < INT_MAX)
 deposit_spec(&acct, INT_MAX - acct.balance);
return true;
}

scenario bool withdraw_max_scen() {
 withdraw_spec(&acct, INT_MAX);
 return true;
}

scenario dfsm account_scenario = {
 .init = account_init,
 .getState = (PtrGetState)account_state,
 .actions = { deposit_scen, withdraw_scen,
 deposit_max_scen, withdraw_max_scen,
 NULL
 }
};

The condition if (0 < acct.balance && acct.balance < INT_MAX)in the
deposit_max_scen function is required to prevent the overflow during evaluation the expression
INT_MAX - acct.balance and precondition violation when depositing zero sum.

But now the number of test states equals to the sum of INT_MAX and MaximalCredit. To prevent
unacceptable growth of the number of test states the withdraw_scen function should be
changed:

 20

Using CTesK 2.1 with GCC: Getting Started
scenario bool withdraw_scen() {
 if (acct.balance <= 5)
 iterate (int i = 1; i <= 5; i++;) withdraw_spec(&acct, i);
 return true;
}

That is if account balance is more 5 only two new functions will be called.

Rebuild the test, run it and generate reports.

Figure 6 The summarized test report containing the failures

Now on the start report page there are the numbers of failures found in each scenario marked
with red color and new links to summarized failure report and detailed failure reports on the
navigation bar. Besides there is a number 1 marked with red color.

The summarized function coverage report shows that all branches of the deposit_spec function
is covered, but among seven branches of the withdraw_spec function only four ones is covered,
and a failure is found in one of covered branches.

Figure 7. The summarized function coverage report after scenario changes.

Decreasing coverage is caused by failure occuring — by default test running is stoped when
occuring failure.

The detailed coverage report of the withdraw_spec function shows, that after scenario changes
the Maximal withdrawal branch is covered, and in this branch a failure is found.

 21

Using CTesK 2.1 with GCC: Getting Started

Figure 8. The detailed function coverage report of withdraw_spec function after scenario

changes.

Summarized failure report
A summarized failure report can be opened by the All failures link. It contains a list of detected
failures with a short description containing a kind of failures and a place where it has become
apparent.

Figure 9. The summarized failure report.

The report shows one failure — the violation of the postcondition of the withdraw_spec
function.

Detailed failure report
A detailed failure report can be opened by the failure <failure number> link.

 22

Using CTesK 2.1 with GCC: Getting Started

Figure 10. The detailed failure report for the erroneous implementation

It contains a detailed description of the failure:

o location — the location of the failure description in the trace file: 4563 line;

o scenario — the test scenario detecting the failure: account_scenario;

o state — the test scenario state preceding the failure occurrence: -3;

o transition — the scenario function and the values of its iterated variables corresponding
to the failure occurrence: withdraw_max_scen();

o specification function — the specification function detecting the failure:
withdraw_spec();

o parameter value — the values of the arguments of the specification function detecting
the failure: acct = <0049638C>ptr to struct { -3 };

o coverage & branch — the branches of the specification function coverages
corresponding to the failure occurrence: C, Maximal withdrawal;

o prime formula — the values of prime formulae corresponding to the failure: all
invariants and reads access restrictions are true.

An information concerning a failure could be also found in the detailed scenario report.

 23

Using CTesK 2.1 with GCC: Getting Started

Figure 11. A failure in the detailed scenario report.

The reports show that in the state -3 and the withdrawn amount 2147483647 the withdraw_scen
function returns 2147483647 and the balance value after the call is 2147483646. Although the
withdraw_scen function postcondition states that in this case the balance should not be changed
and the return value should be zero:

post {
 if (balance >= sum - MaximalCredit)
 return balance == @balance - sum && withdraw_spec == sum;
 else
 return balance == @balance && withdraw_spec == 0;
 }

The implementation can be found in the account.с file located in examples/account of the
CTesK tree. The implementation of the withdraw function is:

int withdraw (Account *acct, int sum) {
 if (acct->balance - sum < -MAXIMUM_CREDIT) return 0;
 acct->balance -= sum;
 return sum;
}

That is, if acct->balance is negative and sum more than INT_MAX + acct >balance + 1 the
overflow occurs in the expressions acct->balance - sum and acct->balance -= sum. The
fixed code is:

int withdraw (Account *acct, int sum) {
 if (acct->balance < sum - MAXIMUM_CREDIT)
 return 0;
 acct->balance -= sum;
 return sum;
}

In this implementation the overflow is not occured, and the function work meets the
requirements.

Please, rebuild the test with the fixed implementation, run it and regenerate reports. Reports
should show no failures and 100% of coverage of the both functions.

 24

Using CTesK 2.1 with GCC: Getting Started

Appendix A:
Using CTesK with GCC compiler

SeC translator is located in the bin directory of the CTesK installation directory6. Translator can
be launched in the following form:

> sec.sh [options] <sec file> <c file>
It translates the SeC file <sec file> into the C file <c file>.

The option --sei <sei file> sets an intermediate file to use. This option could be omitted. All
other options are passed to preprocessor.

Using GNU Make to Build Test
To build a test developed with the CTesK, GNU Make program can be used. To simplify a make
file creation, its template contained in the CTesK distribution can be used. It is located in the
examples/example.make file.
To use it, a new make file (Makefile or GNUmakefile) should be created in the test's directory.
In this file, the following variables should be defined:
sec_sources

This variable should contain a whitespace-separated list of .sec files that are developed
for the test.

c_sources
This variable should contain a whitespace-separated list of .c files that should be linked
with the test.

example
This variable should contain a name of the executable test file.

Then makefile located in the CTesK distribution should be included using the include directive:
include $(CTESK_HOME)/examples/example.make

After that GNU Make program should be run using make or gmake program (depending on
Linux distribution).
The XINCLUDE and XLIB variables allow to specify additional include files paths (-I<path>)
and additional libraries and their locations (-l<lib> and -L<path>).
Examples of make files can be found in examples/account, examples/pqueue, and
examples/stack directories.

Test Execution
Run in the directory containing an executable file of the test the command

6 When using CTesK on the Window platform with Cygwin environment, if you cannot find sec.sh in bin directory
of the CTesK installation directory please refer to the section “Known installation issues” of the document “CTesK
2.1: Installation Instructions”.

 25

Using CTesK 2.1 with GCC: Getting Started

> <test file> [<trace options>] [<options>]
<test file> is an executable test. <trace options> are test trace configuration options. <options>
are options defined by user during a test development. The test tracing is affected by the
following options:
-t <trace file> — trace will be directed to the file <trace file>;
-tc — trace will be directed to the console;
-tt — trace will be directed to the file <scenario name>--YY-MM-DD--HH-MM-SS.trace.

Test Report Generation
CTesK report generator ctesk-rg.sh is located in the bin directory of the CTesK installation
directory7. To view the test execution report in human-readable form, run the following
command

>ctesk-rg.sh -d <trace directory> <trace file>
As a result, the HTML report should be generated in the <trace directory> directory.
Open the file scenarios.html in this directory to see the start page of the HTML report.

Figure 12. Start page of HTML test report

7 When using CTesK on the Window platform with Cygwin environment, if you cannot find ctesk-rg.sh in bin
directory of the CTesK installation directory please refer to the section “Known installation issues” of the document
“CTesK 2.1: Installation Instructions”.

 26

	Introduction
	Format conventions
	Other documents

	An example of system under test:�Bank credit account
	Specification of Bank credit account example
	Mediators of�Bank credit account example
	Test scenario of Bank credit account example
	Running test of Bank credit account example
	Test result analysis of�Bank credit account example
	Text test report generation
	Summarized scenario report
	Detailed scenario report
	Summarized function coverage report
	Detailed function coverage report
	Summarized failure report
	Detailed failure report

	Appendix A: �Using CTesK with GCC compiler
	Using GNU Make to Build Test
	Test Execution
	Test Report Generation

