
Copyright © 2004 Institute for System Programming, Russian Academy of Sciences

Moscow 2004

Using CTesK 2.1 with Microsoft Visual C++® 6.0
Getting Started

Contents

Introduction ...1

Format conventions ...1

Other documents..2

An example of system under test: Bank credit account ...3

IDE Run-up..4

Specification of Bank credit account example ..6

Mediators of Bank credit account example...12

Test scenario of Bank credit account example..16

Running test of Bank credit account example ..21

Test result analysis of Bank credit account example ...24
Text test report generation...24

Summarized scenario report ..24

Detailed scenario report...24

Summarized function coverage report...25

Detailed function coverage report ...26

Summarized failure report ...29

Detailed failure report..29

Appendix A: Using CTesK on Windows ...32

Microsoft Visual Studio 6.0 Project Configuration...32

CTesK Toolbar ..32

Test Building ...32

Test Execution ...32

Test Report Generation..33

Using CTesK in command line ...33

Using CTesK with Cygwin ...34

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Introduction

This document is intended to introduce the basic concepts of CTesK. It provides an example of
test development with the help of the tool. It contains a quick overview of the SeC language
concepts and syntax to help getting started with test developing in CTesK environment.

CTesK is an implementation of UniTesK test development method, which amplifies industrial
test development with a variety of cutting-edge technologies based on formal methods including
specification based testing.

UniTesK supports automated development for functional testing. Functional testing provides
checking whether software behavior is proper or not. In other words functional testing checks
conformance of the software to its functional requirements.

Any software provides some interface through which it communicates with an environment.
Functional requirements do not describe the way how the system should be implemented. They
define what externally observable effects the system must produce when interacting with the
environment by means of an interface of the system. System behavior conforms to its functional
requirements if any effect that is being observed complies with the functional requirements.

Functional test development automation is possible only if functional requirements are specified
in a strong formal way. “Formal” means written in a computer readable form that has a unique
interpretation. It is not bound to difficult mathematics or theoretical considerations. The
difference between informal and formal specifications of functional requirements is likewise
difference between natural and programming languages rather than between programming and
mathematics languages.

To implement UniTesK method for C software, CTesK uses SeC (pronounced as [sek]) language
— specially developed Specification Extension of C programming language. SeC extends ANSI
C with notation for preconditions, postconditions and coverage criteria as well as defining
mediators and test scenarios. The main goal is to allow test developers to define and generate
components that can be easily composed into a wide range of complete and effective tests, and
yet to perform intensive reuse of specifications and scenarios.

CTesK toolkit includes the translator of SeC to C, the library of test system support, the
specification type library and the test report generator.

The translator of SeC to C allows the generation of test components from specifications,
mediators and test scenarios. The library of test system support provides the test engine that
implements in C the algorithms of building test sequences and support for tracing test execution.
The specification type library supports the types integrated with standard functions of creation,
initialization, copying, comparison and destroying data of these types. Also the specification type
library includes a set of already defined specification types. The test report generator provides
ability of automatic analyzing test trace and generation of various informative reports from it.

Format conventions
Italic font emphasizes the terms for the main concepts or clauses containing important ideas.
“Double quoted italic font” emphasizes references to other documents from the CTesK
documentation set.

1

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started
Source code examples are presented in preformatted paragraphs.

Monospaced font emphasizes code elements dispersed in the text. SeC keywords are
emphasized with monospace bold font.
Bold font marks file names and commands.

Other documents
More information on CTesK and related test development method can be found in other
documents included in CTesK 2.1 documentation set: “CTesK 2.1: User Guide” and
“CTesK 2.1: SeC Language Reference”. Also UniTesK web site http://www.unitesk.com/
contains information about UniTesK itself, CTesK and others tools supporting UniTesK.
For additional information and questions, please contact e-mail address support@unitesk.com.

2

http://unitesk.ispras.ru/
mailto:support@unitesk.com

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

An example of system under test:
Bank credit account

The document presents test development process using CTesK tool in
Microsoft Visual C++® 6.0 on the example of test development for a system that implements the
functionality of a bank credit account: money deposition and money withdrawal. The account
provides an option for a credit with preset maximum credit.

If you have not installed CTesK 2.1 in your system or have installed it without an option of the
integration into IDE, before further reading this document, please, turn to “CTesK Installation
and Usage Instructions” and install CTesK 2.1 with Microsoft Visual C++® 6.0 integration
option.

The implementation of a bank credit account is located in the account.c file in the
examples\account folder of the CTesK tree. An account itself is implemented as a structure
Account defined in examples\account\account.h.

typedef struct Account {
 int balance;
} Account;

The implementation to be tested is located in the file examples\account\account.c.
The interface of the system consists of two functions:

o void deposit(Account *acct, int sum) — deposits a positive amount sum to the
account by increasing the balance of the account with the given amount;

o int withdraw(Account *acct, int sum) — withdraws a positive amount sum from
the account and returns the actually withdrawn amount, by which the account balance is
decreased. If the difference between the current balance and the amount sum is out of the
permissible credit, the method does not change balance of the account and returns 0. A
maximal value of the credit is defined by macro MAXIMUM_CREDIT in account.h. It should
not be negative.

Our objective is to develop test for this system employing CTesK tool, run the test and analyze
the obtained results.

The next sections describe the development of the test. It includes the following steps:
o Development of a specification of the system under test
o Development of mediators
o Development of a test scenario
o Test execution and analysis of test results.

3

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

IDE Run-up

Run Microsoft Visual C++® 6.0 and open the worspace file account.dsw located in the
examples\account folder of the CTesK tree: select the menu item 'File\Open Workspace...', in
the pop-up window 'Open Workspace' open needed folder, select the file account.dsw and click
the button 'Open'.

Figure 1. Opening the account project.

After it the tab 'FileView' of the window 'Workspace' representing the file tree of the project
should look as on the Figure 2.

4

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 2. Files of the account project.

Files are divided into four groups:

o Source files –– files containing the code on C language. They could contain an
implementation under test, auxiluiry librararies and so on. Also files generated by CTesK
with names begining the symbol '~' belong to this group;

o Header files –– header files on C language;

o SEC Files –– files containing the code on SeC language, and having the extension .sec.
They contain test components: specifications, mediators and test scenarios;

o SEH Files –– header files on SeC language having the extension .seh. They contain
declarations of interfaces of test components.

5

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Specification of
Bank credit account example

The UniTesK test development method supported by the CTesK tool assumes that the functional
requirements should be represented in a clear, unambiguous and computer readable form, which
is called formal specifications. Due to formal representation it is possible to use specifications to
generate programs that verify the compliance of the real behavior of interface functions with the
requirements stipulated for them.

In CTesK formal specifications are written in a special language named SeC1, which is an
extension of C programming language. SeC allows describing of the functional requirements that
determine the functionality of interface functions, i.e. what the system must do when call of its
interface function takes place.

Specifications in SeC language have C-like syntax. Files with the SeC code have .sec or .seh
extensions.

The specification of the account example can be found in the account_model.sec file located in
the examples\account folder of the CTesK tree.
The account specification starts with including the account_model.seh header file located in
examples\account:

#include <limits.h>
#include "account.h"

extern invariant int MaximalCredit;

invariant typedef Account AccountModel;

specification void deposit_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates balance = acct->balance
;

specification int withdraw_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates balance = acct->balance
;

The account_model.seh contains an including files limits.h and account.h and the declarations
of extern variable with invariant, type with invariant and specification functions.
The limits.h file is included to allow using the INT_MAX constant.
The account.h file is included to allow using the MAXIMUM_CREDIT constant and the Account
structure type defined in it:

1 Pronounced as [sek]

6

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started
#define MAXIMUM_CREDIT 3

typedef struct Account {
 int balance;
} Account;

The Account type represents an account as a structure with a single field of int type. When
balance is negative its absolute value should not exceed the limit defined by macro
MAXIMUM_CREDIT. To describe this requirement in the account_model.seh file the
AccountModel type is declared as the typedef of Account type with invariant. The invariant is
defined in account_model.sec:

invariant (AccountModel acct) { return acct.balance >= -MaximalCredit; }

It returns true, if a value of the balance field of verified structure meets the requirement, and
false otherwise. The invariant should be held before and after calling interface functions, which
use data of the type having constraints described in the invariant. Thus an invariant encapsulates
common parts of constraint specifications of these interface functions.

Because the set of valid values of the AccountModel type does not coincide with the value set of
the Account structure, the AccountModel type is a subtype of the Account type.

The MaximalCredit variable with invariant is declared in the account_model.sec file. In the
same file its invarint is defined.

invariant (MaximalCredit) { return MaximalCredit >= 0; }

The invariant of the MaximalCredit variable describes the requirement to the maximal value of
the credit — it should not be negative. The variable invariant should be held before and after any
calls of any interface functions.
Further constraints on the system behavior are described in special functions marked with the
keyword specification. They are called specification functions.
The deposit_spec specification function is correspondent to the deposit interface function.
This interface function does not return any result and has two parameters. The first one is a
non-null pointer to the Account structure that represents an account to which money should be
deposited. The second parameter of int type is an amount of money to deposit. The function
should read the second parameter and update the balance field of the structure pointed by the
first parameter: after the call the balance field should be increased exactly by the number passed
in the second parameter. Besides, the value of the second parameter should be more than zero
and should not be too large to cause overflow in the balance field after increasing.

In SeC these requirements are described in the following specification function deposit_spec.
specification void deposit_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates balance = acct->balance
{
 pre { return (acct != NULL) && (sum > 0) && (balance <= MAX_INT - sum); }

 coverage C {
 if (balance + sum == MAX_INT); return {maximum, "Maximal deposition"};
 else if (balance > 0) return {positive, "Positive balance"};
 else if (balance < 0)
 if (balance == -MaximalCredit) return {minimum, "Minimal balance"};
 else return {negative, "Negative balance"};
 else return {zero, "Empty account"};
 }
 post { return balance == @balance + sum; }
}

7

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

The definition of specification function begins with the signature:
specification void deposit_spec (AccountModel *acct, int sum)

The signature of any specification function should contain a keyword specification. Besides
the name the signature of the deposit_spec specification function differs from the signature of
the deposit implementation function only in the type of the first parameter. It is a pointer to the
AccountModel type, which is a subtype of the Account type.

After the signature access restrictions follow.
specification void deposit_spec (AccountModel *acct, int sum)
 reads MaximalCredit
 updates balance = acct->balance

They show that when the deposit function is called
o the system’s behavior depends on the value of the MaximalCredit variable2, and its

value should not be changed after the call;
o the system’s behavior depends on the value of balance field of the structure referenced

by acct parameter, and its value can be changed after the call.
In addition access restriction of the balance field defines an alias of the mentioned field. The
alias is used in the body of the specification function to simplify and clarify expressions.
The keyword reads specifies “read only” access restriction, i.e. the values of parameters and
variables under the reads access restriction should not be changed as a result of the call of the
described function.

In SeC like as in C, any change of values of the arguments passed by value cannot be visible
outside the function, i.e. these parameters always have the reads access restriction.

Unlike C, parameters passed trough pointers are interpreted more strictly. If a pointer is not of
the void* type it is considered as a pointer to a single value of pointed type, not an array of
values 3. Pointers to the void type are interpreted as just values of an address, paying no attention
to content of memory referred by these pointers.

At run-time CTesK checks that values referenced by pointers with the reads access restriction
are not changed right after each call of the corresponding interface function. Also CTesK
provides automatic run-time checking for the values of reads parameters and variables against
their invariants, if any, before each call of the corresponding interface function.

The keyword updates specifies “read-write” access restriction, i.e. the values of parameters and
variables under the updates access restriction may be changed as a result of the call of the
described function. In SeC like as in C, the externally visible value of the argument may be
changed only if it is passed through a pointer. But in SeC, it must be considered strongly as a
pointer to a single value of the corresponding type.

CTesK provides an automatic run-time checking for values of updates parameters and variables
against their invariants, if any, before and after each call of the corresponding interface function.
By default, all parameters of a specification function have “read-write” access restriction.

2 In accordance to the requirements the behavior of the system under test is defined only when a maximal credit is
no t negative, this requirement is described in the MaximalCredit variable invariant. For automatic checking the
variable invariant before pre- and postcondition checking the variable access restriction should be described in the
corresponding specification functions.
3 To specify the function with the dynamic arrays as arguments one should use containers of specification types. For
details see “CTesK 2.1: Users’ Guide” and “CTesK 2.1: SeC Language Reference”

8

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

The body of the deposit_spec specification function describes the behavior of the system under
test when calling the deposit interface function. The body contains a description of functional
requirements in the form of pre- and postconditions and coverage criteria.
When calling the deposit interface function the pointer to an account structure should be
non-null, an amount of money to be deposited should be positive and the sum of the current
balance and the second parameter should not exceed the maximum value of the int type. In SeC
it is described in the precondition.

pre { return (acct != NULL) && (sum > 0) && (balance <= MAX_INT - sum); }

It is a block statement marked with the pre keyword. The precondition returns true if input
values of parameters are valid and false otherwise. Thus precondition specifies definition
domain of the function. If input parameters’ values do not belong under it, the behavior of the
function is undefined.
Precondition should have no side effects. No more than one precondition can be defined in a
specification function. It should be located before coverage criteria and postcondition. If there
are no constraints on input values the precondition may be omitted.
After the deposit interface function call the account balance should be equal to the account
balance prior to the function call increased by the sum amount. In SeC these requirements are
described in the postcondition.

post { return balance == @balance + sum; }

It is a block statement marked with the post keyword. The postcondition returns true if input
and output values of the function call conform to the functional requirements, and false
otherwise. Thus it verifies that the function behaves correctly.
A special unary operator @ is used in the postcondition to get access to the input value of the alias
of the balance field. That is, in the postcondition 'balance' denotes the output value of the alias
of the balance field, and '@balance' denotes the input value.
This operator is applicable to expressions inside the post block statement only. The keyword
post defines the point where the corresponding implementation function is called. In the body of
a specification function expressions located before the post keyword are evaluated before the
implementation function call. Expressions located after the post keyword are evaluated after the
call except for expressions under @ operator that are evaluated before the implementation
function call.
Postcondition should have no side effects. The specification function should have exactly one
postcondition. It should follow precondition and coverage criteria, if any.
According to the requirements the deposit function has the uniform behavior on the whole
function definition domain. It is rather reasonable assumption that the behavior of any
implementation of the deposit function does not depend of the absolute value of the current
balance and an amount of money to be deposited. But it may depend of the sign of the current
balance. Also the function behavior should be tested when the parameters’ values are on the
boundaries of sets of their allowable values. Therefore coverage criterion of the deposit
specification function distinguishes five different test situations.

coverage C {
 if (balance + sum == MAX_INT) return { maximum, "Maximal deposition" };
 else if (balance > 0) return { positive, "Positive balance" };
 else if (balance < 0)
 if (balance == -MAXIMUM_CREDIT) return {minimum, "Minimal balance"};
 else return { negative, "Negative balance" };
 else return { zero, "Empty account" };
}

9

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

The function behavior should be tested in each situation defined in the coverage criterion.

The coverage criterion is a named block statement marked with the coverage keyword. It
defines the partition of the function behavior into branches — functional branches. Each branch
is defined by the return operator with a construct similar to the structure variable initialization
construct in C. It should contain an identifier as the first field— branch identifier, and a string
literal as the second field — branch name.

The partition defined by the coverage block should be complete and unambiguous, i.e. each
allowable set of input parameters’ values should correspond to a single functional branch.

In a specification function several coverage criteria with different names can be defined. The
coverage blocks should be located after precondition and before postcondition. They should
have no side effects. If no coverage blocks are defined, it is equivalent to a coverage criterion
with a single functional branch.

The withdraw_spec specification function is correspondent to the withdraw interface function.
specification int withdraw_spec (AccountModel *acct, int sum)
reads MaximalCredit
updates balance = acct->balance {
 pre { return (acct != NULL) && (sum > 0); }
 coverage C {
 if (sum == INT_MAX) return {max, "Maximal withdrawal"};
 if (balance > 0)
 if (balance < sum - MaximalCredit)
 return {pos_too_large, "Positive balance. Too large withdrawal"};
 else
 return {positive_ok, "Positive balance. Successful withdrawal"};
 else if (balance < 0)
 if (balance >= sum - MaximalCredit)
 return {neg_too_large, "Negative balance. Too large withdrawal"};
 else
 return {negative_ok, "Negative balance. Successful withdrawal"};
 else
 if (balance < sum - MaximalCredit)
 return {zero_too_large, "Empty account. Too large withdrawal"};
 else
 return {zero_ok, "Empty account. Successful withdrawal"};
 }
 post {
 if (balance >= sum - MaximalCredit)
 return balance == @balance - sum && withdraw_spec == sum;
 else
 return balance == @balance && withdraw_spec == 0;
 }
}

The withdraw interface function returns a value of the int type and has two parameters. The
first one is a non-null pointer to the Account structure from which money should be withdrawn.
The second parameter is a number of int type that is an amount of money to withdraw. The
function should read the second parameter and update the balance field of the structure pointed
by the first parameter. If the requested withdrawal does not lead to the maximum credit
overcome, then the balance field after the call should be decreased exactly by the number
passed in the second parameter. Otherwise the balance field should not be changed. The
function should return the withdrawn sum in the case of successful withdrawal or 0 otherwise.

The precondition states that the acct pointer should be non-null and the sum amount to withdraw
should be positive.

10

There are two main use cases of the withdraw function — when the withdrawal of the amount
given is possible and when it is impossible. In the coverage C block the functionality is

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

partitioned into the seven branches. This criterion specifies that each use case should be tested
with the current balance values from different subsets of its definition domain — especially on
the domain boundaries.

The postcondition divided into two cases: when the withdrawal of the amount given is possible
and when the withdrawal of the amount given is impossible. In the first case the postcondition
tells that the balance should be reduced by the sum value and the function should return sum. In
the second case the postcondition tells that the balance should not be changed and the function
should return 0. A function identifier is used to refer to the result returned by the function, in the
given example it is withdraw_spec.

In order to obtain the components that check the calls of the specified interface functions, the
specification should be translated into the C code.

To translate the specification file in Microsoft Visual C++® 6.0 IDE, open the
account_model.sec file and choose the menu item 'Build\Compile account_model.sec' or press
the key combination Ctrl+F7.

As a result of the translation the ~account_model.c file should be generated in
examples\account and added to the project folder 'SEC Files'.

11

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Mediators of
Bank credit account example

An implementation of the bank credit account and its specification should be bound to enable the
test to check their conformance to each other.
In UniTesK method, special components called mediators are used for this purpose.

In SeC mediators are implemented by special mediator functions marked with the keyword
mediator.
The project account contains implemented mediator defined in the file account_mediator.sec
located in the folder examples\account of the CTesK tree. You can skip instructions for
developing mediators and go to the next section.

To create a template of new mediator in Microsoft Visual C++® 6.0 the wizard
'CTesK Mediator Wizard' should be run. To launch it click the button 'CT

µ' located on the
CTesK tool panel.

Figure 3. The button launching CTesK mediator wizard.

In the pop-up window on the first step ('SEH Files') of the wizard should SeC header files
containing declarations of specification functions describing the functionality to be tested.

In the list 'All project SEH files' select the file account_model.seh and click the button 'Add >'.
As a result selected file moves into the list 'Selected SEH files' as shown on the Figure 4. Then
click the button 'Next >'.

12

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 4. Selecting SEH files containing specification function declarations.

On the next step ('Mediator Functions') you should select specification functions, for which
mediators should be developed, and define names of mediator functions.

Do not change default setting and click the button 'Next >'.

Figure 5. Selecting specifiation functions to be tested and names of their mediator functions.

On the next step ('Mediator Configuration') you should select a type of the implementation
under test and define name for SeC files for generated mediator template.

13

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Do not change default implementation type 'Open state implementation' (in this case
synchronization of the specification and implementation states is implemented in one function)
and type 'my_account_mediator' in the text field 'Mediator file names'. To generate mediator
template click the button 'Finish'.

Figure 6. Selecting implementation type and mediator name defining.

As a result two files are generated my_account_mediator.seh and my_account_mediator.sec
containing mediator template. The files are automatically added to the current project. In the
editor window of Microsoft Visual C++® 6.0 the file my_account_mediator.sec is opened,
which should be added by the code implementing meditor functionality.

In the file my_account_mediator.sec templates of the following functions are defined:

o the function map_state_up_my_account_mediator synchronizing the specification and
implementation states;

o two mediator functions: deposit_media and withdraw_media. The first one binds the
specification function deposit_spec с with the implementation interface function
deposit, and the second –– withdraw_spec with withdraw.

To complete mediator development it should be done the following:

o the state synchronization function should be implemented;

o in the blocks of the mediators marked with the keyword call the functionality described
in the correspondent specification function by means of the call of the correspondent
implementation interface function should be implemented.

In the example there are no special actions for state synchronization because the pointer to the
specification state is paased to the implementation functions among of their arguments. Do not
change the function map_state_up_my_account_mediator:

static void map_state_up_my_account_mediator ()
{
 // TODO: Add state synchronization actions here
}

14

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Let's consider the template of the mediator function deposit_media.

The function definition begins with the keyword mediator, then the mediator function name, the
keyword for and the signature of the specification function with access restrictions follow.

In the block of the mediator function body marked with the keyword call an implementation of
the functionality described in the specification function by means of the call of the corresponding
implementation interface function should be defined.

Add in the call block the call of the function deposit with the same arguments as the
specification function ones (acct and sum):

mediator deposit_media for
specification void deposit_spec(AccountModel* acct, int sum)
reads sum
updates acct->balance
{
 call
 {
 // TODO: Add implementation function call here
 deposit(acct, sum);
 }
 state
 {
 map_state_up_my_account_mediator ();
 }
}

Likewise in the call block of the template of the mediator function withdraw_media add the call
of the function withdraw with acct and sum as arguments. Because the specification function
has return value the call block of its mediator should return the result of the call:

mediator withdraw_media for
specification int withdraw_spec(AccountModel * acct, int sum)
reads sum
updates acct->balance
{
 call
 {
 // TODO: Add implementation function call here
 return withdraw(acct, sum);
 }
 state
 {
 map_state_up_my_account_mediator ();
 }
}

Make sure that developed file is correctly translated into the C code. To translate it select the
menu item 'Build\Compile my_account_mediator.sec' or press the key combination Ctrl+F7.

As a result in the folder examples\account the file ~my_account_mediator.c is generated and
added into the project.

15

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Test scenario of
Bank credit account example

Specifications provide a formal description of the functionality of a system under test.
Components that check individual calls of the specified interface functions are generated basing
on them. Mediators provide binding between the specification and the implementation under test.
They allow testing different implementations of the same functionality using the same
specifications.

To check the behavior of the system under test in various conditions, relevant sequence of calls
to interface functions should be built. In CTesK test sequences are built automatically by test
engine. Test engine should be given by a short description of the test called test scenario.

The scenario of the account example can be found in the account_scenario.sec located in the
examples\account folder of the CTesK tree.

Test scenario consists of two main parts:
o a function of building generalized state, which is used to reduce the number of test

situations;
o scenario functions, describing iterations of arguments of specification functions.

The project account contains implemented the test scenario defined in the file
account_scenario.sec located in the folder examples\account of the CTesK tree. You can skip
instructions for developing test scenario and go to the next section.

To create a template of new test scenario in Microsoft Visual C++® 6.0 the wizard
'CTesK Scenario Wizard' should be run. To launch it click the button 'CT

∆' located on the
CTesK tool panel.

Figure 7. The launching CTesK scenario wizard.

In the pop-up window on the first step ('SEH Files') of the wizard should SeC header files
containing declarations of specification functions describing the functionality to be tested and
their mediator functions.

In the list 'All project SEH files' select the files account_model.seh and
my_account_mediator.seh, and click the button 'Add >'. As a result selected file moves into the
list 'Selected SEH files' as shown on the Figure 8. Then click the button 'Next >'.

16

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 8. Selecting SEH files containing specification and mediator function declarations.

On the next step ('Scenario Functions') you should select specification functions, for that
templates of scenario functions should be created, define their names, select corresponding
mediator functions, and turn on (if it is needed) the filtration by coverage for specification
function arguments.

Do not change default setting and click the button 'Next >'.

Figure 9. Selecting specification functions to be tested, defining scenario function names, and

setting other options.

17

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

On the next step ('Scenario Configuration') you should define a type and creation arguments of
generalized state of the test scenario, and names of SeC files to be generated.

As the generalized state we use the account balance. Because it is an integer select the item
'Integer' in thу drop-down list 'Scenario state type'. Type my_account_scenario in the text
field 'Scenario files name'. Turn on the option 'Into the separate files' and type
my_account_main in the text field 'Main files name'. Then click the button 'Finish'.

Figure 10. Defining type and creation arguments of generalized test scenario state, and names

of files to be generated.

Four files my_account_scenario.seh, my_account_scenario.sec, my_account_main.seh and
my_account_main.sec should be generated and automatically added into the current project.
They contain the template of the test scenario and the function main launching the test. In the
editor window the file my_account_scenario.sec is opened, which should be added by the code
implementing test scenario functions.

In the file my_account_scenario.sec are defined templates of the following functions:

o an initialization function of the test scenario my_account_scenario_init;

o a finalization function of the test scenario my_account_scenario_finish;

o a function of building generalization state my_account_scenario_state;

o two scenario functions deposit_scen and withdraw_scen, that describing argument
iteration for specification functions deposit_spec, вторая and withdraw_spec
correspondingly.

To complete test scenario development should be done the following:

o a set of specification data containing the history of changes of the account balance should
be defined;

o an initialization function of the test scenario my_account_scenario_init should be
defined;

18

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

o a finalization function of the test scenario my_account_scenario_finish should be
defined;

o a function of building generalization state my_account_scenario_state should be
defined;

o iterations of arguments of specification functions ahould be added into scenario functions
deposit_scen and withdraw_scen.

Specification functions deposit_spec and withdraw_spec have as their argument a pointer to a
variable of the type AccountModel containing the account balance. During testing the only
account acct will be used. Add the declaration of the variable acct of the type AccountModel in
the file begining:

// TODO: Add specification state definition here
AccountModel acct;

Then define account initialization actions into the initialization function
my_account_scenario_init (assining zero into the field balance of the variable acct):

bool my_account_scenario_init (int argc, char **argv)
{
 // TODO: Add scenario initialization actions here
 acct.balance = 0;
 return true;
}

Do not change the finzlization function my_account_scenario_finish:
void my_account_scenario_finish ()
{
 // TODO: Add scenario finalization actions here
}

For building the generalized state of the test scenario based on the account balance add the
function my_account_scenario_state the field acct.balance as an argument of the function
create:

Object *my_account_scenario_state ()
{
 return create (&type_Integer /* TODO: Add scenario generalized
 state creation parameters here */, acct.balance);
}

Let's consider the templates of the scenario functionы deposit_scen and withdraw_media.

Any scenario function should have return type bool, should be marked with the keyword
scenario and should have no arguments.

Using the operate iterate add to the scenario fucntion deposit_scen an iteration of deposition
value from 1 to 5, for the account having the balance not more 5:

/*
specification void deposit_spec(AccountModel * acct, int sum)
reads sum
updates acct->balance
*/
bool scenario deposit_scen () {
 // TODO: Add cycles for parameters iteration here
 if (acct.balance <= 5) {
 iterate (int i = 1; i <= 5; i++;)
 deposit_spec (/* TODO: Add parameters values here */ &acct, i);
 }
 return true;
}

19

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

To the scenario fucntion withdraw_scen add an iteration of withdrawal value from 1 to 5:
/*
specification int withdraw_spec(AccountModel * acct, int sum)
reads sum
updates acct->balance
*/
bool scenario withdraw_scen () {
 // TODO: Add cycles for parameters iteration here
 iterate (int i = 1; i <= 5; i++;)
 withdraw_spec (/* TODO: Add parameters values here */ &acct, i);
 return true;
}

Make sure that developed file is correctly translated into the C code. To translate it select the
menu item 'Build\Compile my_account_scenario.sec' or press the key combination Ctrl+F7.

As a result in the folder examples\account the file ~my_account_scenario.c is generated and
added into the project.

20

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Running test of
Bank credit account example

The last component of the account example is located in the account_main.sec file generated by
the scenario wizard (see the previos section “Test scenario of Bank credit account example”). It
contains definition of the function main of the test program, that obtains command line
arguments of the test and launches the test scenario with these arguments.

#include "my_account_main.seh"

#include "account_model.seh"
#include "my_account_mediator.seh"
#include "my_account_scenario.seh"

void my_account_main (int argc, char **argv)
{
 set_mediator_deposit_spec (deposit_media);
 set_mediator_withdraw_spec (withdraw_media);

 my_account_scenario (argc, argv);
}

int main (int argc, char **argv)
{
 my_account_main(argc, argv);
 return 0;
}

The header file my_account_scenario.seh contains the declaration of the scenario variable:
scenario dfsm my_account_scenario;

The function main calls with its arguments the function my_account_main, which sets the
mediator functions for the specification functions deposit_spec and withdraw_spec:

set_mediator_deposit_spec (deposit_media);
set_mediator_withdraw_spec (withdraw_media);

, and starts the scenario. The last looks as calling the function with the same name as th scenario
variable (my_account_scenario) and having the same arguments as the function main:

 my_account_scenario (argc, argv);

To translate the file my_account_main.sec open it in IDE, and select the menu item
'Build\Compile my_account_main.sec' or press the key combination Ctrl+F7.

As a result in the folder examples\account the file ~my_account_main.c is generated and added
into the project.

Now there are all needed files for building the executable test file: the implementation source file
account.c, and generated files — ~account_model.c, ~my_account_mediator.c,
~my_account_scenario.c and ~my_account_main.c.

Remove from the project needless files: account_mediator.seh, account_mediator.sec,
~account_mediator.c, account_scenario.seh, account_scenario.sec, ~account_scenario.c,

21

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

account_main.seh, account_main.sec and ~account_main.c. To do it select they in the window
'Workspace' (on the tab 'FileView') and press the key 'Delete'.

To build the executable test file select the menu item 'Build\Build account.exe' or pres the key
F7.

As a result in the folder examples\account the executable file account.exe should be created.

The command line options of the test are passed by the main function to the test scenario. The
standard options of test scenario are the following:

-t <file-name> — trace will be directed the file '<file-name>'

-tc — trace will be directed the console

-tt — trace will be directed the file
'<scenario-name>--YY-MM-DD--HH-MM-SS.trace'

Test scenario processes standard arguments and passes the rest to an initialization function of the
test scenario.

Let’s run the executable file with parameters directing trace to the trace.xml file.

To define of the test program options select the menu item 'Project\Settings…' or press Alt+F7,
select the tab 'Debug', in the text field 'Program arguments' of the category 'General' type a
line '-t trace.xml', and press the button 'OK'.

Figure 11. Setting the test execution options.

To run the test select the menu item 'Build\Execute account.exe' or press the key combination
Ctrl+F5.

As a result of the test execution the trace.xml file should be generated in the folder
examples\account.

Add the file trace.xml to the project. To do it select the menu item
'Project\Add To Project ►\Files...'. In the pop-up window 'Insert Files into Project' open
needed folder, in the drop-down list 'Files of type' select the file type 'All Files (*.*)', select the
file trace.xml and press the key 'OK'.

22

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 12. Adding the trace file into the project.

23

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Test result analysis of
Bank credit account example

Text test report generation
To generate test reports open the trace file trace.xml in Microsoft Visual C++® 6.0 and launch
CTesK trace analyzer by clicking the button 'CT

TA' located in the CTesK tool panel.

Figure 13. The button launching CTesK trace analyzer.

As a result in the folder examples\account the subfolder containing generated test reports should
be created. Test reports are a set of linked HTML documents.

After report generation the program for report browsing should be automatically start. In the left
frame of the start page is placed a navigation report list.

Summarized scenario report
The start page contains a summarized test report. It shows how many states and transitions were
visited and how many fails were detected for each scenario.

Figure 14. The summarized test report.

In the account example the only scenario is available. It has visited 14 states and 115 transitions.
No fails were detected.

Detailed scenario report
A detailed scenario report can be opened by the scenario name link. It describes all states and
transitions visited during the test scenario execution. The first three columns of the table describe
transitions. The last one shows the total number of hits and the number of failures detected on
the transition given.

24

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 15. The detailed scenario report.

For instance, there are ten transitions started from the test scenario state –1 in the account
example. The test scenario state was defined as the current value of the balance in the. Therefore
this state corresponds to the balance value –1.

The transition marked deposit_scen(int i = 1) leads to the state 0. The mark shows the
transition is performed by call of the scenario function deposit_scen with the value of the
iterated variable i equal to 1. This transition was performed 13 times and no failures were
detected.

Summarized function coverage report
A summarized function coverage report can be opened by the All functions link. It shows a
percentage of branch coverage for each tested function.

25

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 16. The summarized function coverage report.

There are two specification functions in the account example. The both of them have one
coverage called C. The account_scenario scenario has covered four of five branches of the
deposit_spec function and six of seven branches of the withdraw_spec function.

Detailed function coverage report
A detailed function coverage report can be opened by the function name link. It includes
information about a number of hits and fails in each branch of the function given.

Figure 17. The detailed function coverage report of deposit_spec function

The report of the deposit_spec function shows that the deposit_spec function was called with
arguments corresponding to Positive balance, Minimal balance, Negative balance and
Empty account branches — 246, 10, 31 and 32 times respectively. No calls were performed
with the arguments corresponding to Maximal deposition.

26

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 18 The detailed function coverage report of withdraw_spec function.

The report of the withdraw_spec function shows the withdraw_spec function was called with
arguments corresponding to all branches besides Maximal withdrawal branch.

To ensure complete coverage of the branches of the deposit_spec and withdraw_spec function
two new scenario functions should be defined in the scenario. They should provide the parameter
values to maximal deposition and maximal withdrawal.

scenario bool deposit_max_scen() {
if (0 < acct.balance && acct.balance < INT_MAX)
 deposit_spec(&acct, INT_MAX - acct.balance);
return true;
}

scenario bool withdraw_max_scen() {
 withdraw_spec(&acct, INT_MAX);
 return true;
}

scenario dfsm account_scenario = {
 .init = account_init,
 .getState = (PtrGetState)account_state,
 .actions = { deposit_scen, withdraw_scen,
 deposit_max_scen, withdraw_max_scen,
 NULL
 }
};

The condition if (0 < acct.balance && acct.balance < INT_MAX)in the
deposit_max_scen function is required to prevent the overflow during evaluation the expression
INT_MAX - acct.balance and precondition violation when depositing zero sum.

But now the number of test states equals to the sum of INT_MAX and MaximalCredit. To prevent
unacceptable growth of the number of test states the withdraw_scen function should be
changed:

27

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started
bool scenario withdraw_scen () {
 // TODO: Add cycles for parameters iteration here
 if (acct.balance <= 5) {
 iterate (int i = 1; i <= 5; i++;)
 withdraw_spec (/* TODO: Add parameters values here */ &acct, i);
 }
 return true;
}

That is if account balance is more 5 only two new functions will be called.

Rebuild the test, run it and generate reports.

Figure 19 The summarized test report containing the failures

Now on the start report page there are the numbers of failures found in each scenario marked
with red color and new links to summarized failure report and detailed failure reports on the
navigation bar. Besides there is a number 1 marked with red color.

The summarized function coverage report shows that all branches of the deposit_spec function
is covered, but among seven branches of the withdraw_spec function only four ones is covered,
and a failure is found in one of covered branches.

Figure 20. The summarized function coverage report after scenario changes.

Decreasing coverage is caused by failure occuring — by default test running is stoped when
occuring failure.

The detailed coverage report of the withdraw_spec function shows, that after scenario changes
the Maximal withdrawal branch is covered, and in this branch a failure is found.

28

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 21. The detailed function coverage report of withdraw_spec function after scenario

changes.

Summarized failure report
A summarized failure report can be opened by the All failures link. It contains a list of detected
failures with a short description containing a kind of failures and a place where it has become
apparent.

Figure 22. The summarized failure report.

The report shows one failure — the violation of the postcondition of the withdraw_spec
function.

Detailed failure report
A detailed failure report can be opened by the failure <failure number> link.

29

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 23. The detailed failure report for the erroneous implementation

It contains a detailed description of the failure:

o location — the location of the failure description in the trace file: 4563 line;

o scenario — the test scenario detecting the failure: account_scenario;

o state — the test scenario state preceding the failure occurrence: -3;

o transition — the scenario function and the values of its iterated variables corresponding
to the failure occurrence: withdraw_max_scen();

o specification function — the specification function detecting the failure:
withdraw_spec();

o parameter value — the values of the arguments of the specification function detecting
the failure: acct = <0049638C>ptr to struct { -3 };

o coverage & branch — the branches of the specification function coverages
corresponding to the failure occurrence: C, Maximal withdrawal;

o prime formula — the values of prime formulae corresponding to the failure: all
invariants and reads access restrictions are true.

An information concerning a failure could be also found in the detailed scenario report.

30

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 24. A failure in the detailed scenario report.

The reports show that in the state -3 and the withdrawn amount 2147483647 the withdraw_scen
function returns 2147483647 and the balance value after the call is 2147483646. Although the
withdraw_scen function postcondition states that in this case the balance should not be changed
and the return value should be zero:

post {
 if (balance >= sum - MaximalCredit)
 return balance == @balance - sum && withdraw_spec == sum;
 else
 return balance == @balance && withdraw_spec == 0;
 }

The implementation can be found in the account.с file located in examples\account of the
CTesK tree. The implementation of the withdraw function is:

int withdraw (Account *acct, int sum) {
 if (acct->balance - sum < -MAXIMUM_CREDIT) return 0;
 acct->balance -= sum;
 return sum;
}

That is, if acct->balance is negative and sum more than INT_MAX + acct >balance + 1 the
overflow occurs in the expressions acct->balance - sum and acct->balance -= sum. The
fixed code is:

int withdraw (Account *acct, int sum) {
 if (acct->balance < sum - MAXIMUM_CREDIT)
 return 0;
 acct->balance -= sum;
 return sum;
}

In this implementation the overflow is not occured, and the function work meets the
requirements.

Please, rebuild the test with the fixed implementation, run it and regenerate reports. Reports
should show no failures and 100% of coverage of the both functions.

31

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Appendix A:
Using CTesK on Windows

Microsoft Visual Studio 6.0 Project Configuration
CTesK test development project in the Visual Studio is created as 'Win32 Console Application'.

An extension of files containing the SeC language constructs should be .sec or .seh.

CTesK Toolbar
When you start Visual Studio CTesK toolbar should appear. It contains buttons to launch
'Mediator Wizard', 'Scenario Wizard' and 'Trace Analyzer'.

Figure 25. CTesK Toolbar.

If CTesK toolbar is not appeared please refer to the section “Known installation issues” of the
document “CTesK 2.1: Installation Instructions”.

Test Building
The test building can be started using the Visual Studio 'Build' command: choose the
'Build <file>.exe' item in the 'Build' menu or press F7 key.

Test Execution
The test execution is performed using the 'Execute' command: choose the 'Execute <file>.exe'
item in the 'Build' menu or Ctrl+F5 keys. The test trace configuration options and user-defined
options can be set using the project settings window. To open this window select the root folder
of the project on the tab 'FileView' in 'Workspace' window, choose 'Settings…' item in 'Project'
menu or type Alt+F7. 'Projects Settings' window should appear. Set trace configuration options
and user-defined options in 'Program arguments' field of the 'General' category of the 'Debug'
tab.

The test tracing is affected by the following options:

-t <trace file> — trace will be directed to the file <trace file>;
-tc — trace will be directed to the console;
-tt — trace will be directed to the file <scenario name>--YY-MM-DD--HH-MM-SS.trace.

32

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

Figure 26. Program arguments.

Test Report Generation
Open the file containing the test trace in Microsoft Visual Studio and press the 'CT

TA' button of
the 'CTesK Toolbar' menu. HTML test report should be generated and Internet Explorer
contained the first page of the report window should be launched.

Figure 27. Start page of HTML test report.

Using CTesK in command line
To use CTesK in the command line mode execute sec.bat and ctesk-rg.bat command files. They
are located in the bin folder of the CTesK installation folder. To open Command prompt under
Windows choose 'Start Menu\(All)Programs\Accessories\Command Promt'.

Translator can be launched in the following form:
> sec.bat <sec file> <c file> <sei file> [<preprocessor options>]

Here <sec file> is an input specification file, <c file> is an output file, and <sei file> is an
intermediate file for preprocessor output. The tool will generate <c file>.

33

Using CTesK 2.1 with Microsoft Visual C++®: Getting Started

The HTML test report is generated using the following command:
> ctesk-rg.bat -d <output folder> <trace files>

Here <output folder> is the folder where report files will be placed, <trace files> is the list of
files containing test execution traces.

Using CTesK with Cygwin
CTesK could be used with Cygwin environment (see the section “Appendix A: Using CTesK
with GCC compiler” of the document “Using CTesK 2.1 with GCC: Getting started”). You can
use sec.sh to translate SeC files into C files and ctesk-rg.sh to generate HTML reports. It is
recommended to use GNU Make program to build tests.
If you cannot find sec.sh and ctesk-rg.sh in bin folder of the CTesK installation folder please
refer to the section “Known installation issues” of the document “CTesK 2.1: Installation
Instructions”.

34

	Introduction
	Format conventions
	Other documents

	An example of system under test:�Bank credit account
	IDE Run�up
	Specification of Bank credit account example
	Mediators of�Bank credit account example
	Test scenario of�Bank credit account example
	Running test of Bank credit account example
	Test result analysis of�Bank credit account example
	Text test report generation
	Summarized scenario report
	Detailed scenario report
	Summarized function coverage report
	Detailed function coverage report
	Summarized failure report
	Detailed failure report

	Appendix A:�Using CTesK on Windows
	Microsoft Visual Studio 6.0 Project Configuration
	CTesK Toolbar
	Test Building
	Test Execution
	Test Report Generation

	Using CTesK in command line
	Using CTesK with Cygwin

