
Copyright © 2006 Institute for System Programming, Russian Academy of Sciences
Moscow 2006

CTesK 2.2:
User’s Guide

Contents

Contents
Introduction ... 1

What is CTesK...1
UniTesK technology..1
UniTesK implementation in CTesK..3

What is contained in the document..4
Other documents..5
Conventions..5

SeC language.. 6

General information..6
Data types ...6

SeC allowable types...7
Specification data types ...7
Creating new specification types...11
Invariants ...21

Type invariant..22
Variable invariant ..23

Specifications..23
Specification functions ..24
Deferred reactions ...25
Access constraints ...26
Precondition...27
Coverage criterion ...28
Postcondition ...29

Mediators..31
Mediator function ..31

Call-block ..32
State-block ...33

Catcher...34
Scenarios...34

Scenario function...34
Iteration statement ...35
Scenario state variables ...37

Function of evaluating scenario state ..37
Function of determining state stationarity ...37
Function of saving model state..38
Function of restoring model state ..38
Function of initialization ...38
Function of finalization ...39
Scenario variable ...39

ii

Contents

Tests translation and building.. 43

SEC files translation..43
Standard macrodefinitions ...44
CTesK libraries..44

Analysis of test results and test debugging ... 46

Test trace ..46
Messages..46
Tracing control ..48

Static reports ..50
Scenarios..50
Specification functions ..51
Errors ...52

Analysis of results ..53
Error search ...53

Postcondition violation ..54
Violation of the invariant or access constraint ..55
State graph non-determination...57
Violation of strong connectivity of the graph of states ...58
Error during initialization ..60
Internal and user errors ..61

Coverage completeness analysis ...62
Using CTesK in Microsoft Visual C++® 6.0... 64

Project definition ...64
Mediator development ..67
Test scenario development..71
Running test ...75
Test report generation...77
Debugging test..77

Examples of CTesK usage .. 79

Systems that provide API..79
Description of the target system interface ...79
Specification development ..80

Specification model of data ...80
Specification of behavior...83
Queue deletion function...85

Development of mediator functions ..90
Development of test scenario ..93
Main function of test ...96
Building and running test ..96

Windows platform ...97
Linux platform...97

iii

Contents

Report generation and result analysis..98
Appendix A: The code of the queue test ... 105

Implementation..105
queue.h...105
queue.c...106

Specifications..107
queue_spec.sec ..107

Mediators..111
queue_media.seh..111
queue_media.sec..111

Scenarios...113
queue_scen.seh ..113
queue_scen.sec ..113

Function main ..115
queue_main.sec..115

iv

CTesK 2.2 User’s Guide

Introduction

What is CTesK

CTesK toolkit is intended for automated test development for systems that provide API interface
in C. Software testing with the help of CTesK tool is based on UniTesK technology.

UniTesK technology
Quality control is an important challenge that faces software engineers. Testing is the best-
known and most widespread method of quality evaluation and improvement. Functionality and
complexity of modern software grow rapidly, while its life time increases permanently. Under
such conditions labor-intensiveness of traditional approaches to testing grows while their effi-
ciency decreases. Using of UniTesK technology helps to overcome such problems.

The main features of UniTesK technology are as follows:

• In order to provide clear definition of software functionality formal specifications are devel-
oped. This may be done both for newly developed software, even prior to completion of im-
plementation, and for already existing one. Therefore, the technology may be applied to the
tasks of both forward and reverse software engineering.

• Tests are developed on the base of formal specifications instead of implementation. This al-
lows checking for conformance of the software behavior to its requirements. This type of
testing is called the “black box” testing. It provides an opportunity to develop a set of tests
that does not take into account peculiarities of a specific implementation.

• Test coverage criteria are also created on the base of formal specifications. These criteria
allow evaluation to what extent the conformance of the software behavior to the requirements
has been checked.

1

Introduction

• A test scenario is constructed to achieve maximum coverage according to a criterion chosen.
Widely used test scripts are analogous to test scenarios. However, UniTesK test scenarios
give a possibility to improve significantly quality of testing within the same effort.

• Formal specifications and test scenarios may be used in invariable form for testing of various
implementations even if their interfaces differ. Binding of an implementation and tests is
provided by specific test system components—mediators. This approach allows increasing of
the degree of reusing the test system components, thus facilitating test suite engineering and
maintaining.

• All components of the test system, i.e. formal specifications, mediators, and test scenarios,
are recorded in specification extension of programming language used for software develop-
ment. This significantly facilitates familiarization with the technology and understanding of
how the test in connected with the system under test.

The following table describes actions necessary for test development by UniTesK technology:

1. Write the functional requirement
to the target software in form of
formal specifications, based on
analysis of existing documents or
project members’ knowledge.

2. Formulate testing quality require-
ments on basis of derived specifi-
cations, i.e. what level of coverage
for each criterion is sufficient for
testing.

3. Develop a set of test scenarios to
achieve a desired level of cover-
age. Scenarios are developed on
basis of specifications and are not
connected to any particular im-
plementation of target software or
its particular version.

4. Develop a set of mediators to con-
nect obtained tests to a particular
implementation of the target sys-
tem. A definite interface of the
implementation must be known,
thought the implementation can
not be ready for testing at the
moment.

Requirements

Specifications

Specifications

Coverage criterion

Specifications Coverage criterion

Test scenarios

Specification Software interface

Mediators

2

CTesK 2.2 User’s Guide

5. Translate specifications, media-
tors, and scenarios from the exten-
sion of programming language to
a complete test system in this pro-
gramming language in order to ob-
tain ready tests.

6. Execute tests after translation.
Execution can reveal inconsisten-
cies between the test system and
the target software. One should
determine the cause of each incon-
sistence, which can be either a tar-
get system failure, or test system
components failure. After all fail-
ures in specifications, scenarios,
and mediators are corrected, all
tests should be finally executed to
obtain the results in form of test
reports for further analysis.

7. Analyze the results to determine
what failures is detected, whether
the desired level of coverage is
reached, and whether additional
scenarios should be developed.

Stages of test scenarios and mediators development are independent, so steps 3 and 4 can be car-
ried out in any order or even simultaneously.

UniTesK implementation in CTesK
CTesK implements UniTesK for C programming language.

CTesK uses specially developed specification extension of C programming language, called SeC,
for test development. SeC extends C with special constructions, introduced to describe require-
ments to a system under test and other components of the test system in a compact and conven-
ient manner. This makes test development maximally comfortable, and allows reduction of train-
ing costs for specialists who are already familiarized with C. SeC enables development of speci-
fications and scenarios, absolutely independent from the implementation, thus allowing their re-
use.

Failures

Test reports

Tests quality evaluation

Target software

Test reports

Testing system

Automatic tests execution
and reports generation

Specifications

Target software

Mediators

Test scenarios

automatic
generation

Testing system

3

Introduction

CTesK toolkit includes SeC-to-C translator, test system supporting library, library of specifica-
tion data types, and test reports generators.

ence generation in C, and provides tracing of tests execution.

o contains a set of predefined

What is contained in the document

SeC-to-C translator generates test components from specifications, mediators, and tests scenar-
ios.

Test system supporting library provides the test engine, i.e. implementation of algorithms for test
sequ

Specification data types library supports data types integrated with standard functions for creat-
ing, copying, comparing, and destroying data of these types. It als
specification data types.

Generators of textual and graphical test report generates easy-to-analyze representations of test
execution trace.

The “SeC Language” chapter gives a detailed description of specification extension of C.

• “General Information” section lists distinctions of SeC from C, and presents C-extending
concepts and constructions.

• In “Data Types” section, a concept of allowable and specification data types is introduced,
operation with existing specification data types and rules for creating new data types are con-

•

sidered in details. The mechanism of invariants for data types and variables is described.

In “Specifications” section, the method of formal description of requirements for a system
under test in the form of preconditions, postconditions, and access constraints within specifi-

•

cation functions and deferred reactions is reviewed. The method of specifying a coverage
criterion by means of functionality branches is described.

“Mediators” section explains the way of connecting specification to a system under test im-
plementation in the form of mediator functions, which carry out a test action and state syn-

•

chronization.

In “Scenarios” section, building of a test scenario is described, which unites the set of sce-
nario functions for parameter iteration, a test construction mechanism, the function for

In “

evaluating scenario state, and the method of initialization and finalization of the test system
and the system under test.

Test results analysis and tests debugging” chapter, the issues associated with analysis of test
cution data are reviewed. exe

• “Test trace” section describes the format of a trace, generated during test execution.

• “Static reports” section reviews html reports, which contain the information on the failures
d finite

•

found, on coverage of functionality branches of specification functions, on traverse
state machine structure.

“Graphic representations of the trace” section considers various representations of a trace as
a sequence of events that has occurred in the process of test execution.

4

CTesK 2.2 User’s Guide

• “Analysis of results” section describes various messages, which may appear in a report, as
well as the methods of finding failures in accordance with the information obtained. The
method of evaluating achieved coverage is described.

In “Using CTesK in Microsoft Visual C++® 6.0” chapter using CTesK in
Microsoft Visual C++® 6.0 is considered

In “Examples of CTesK usage” chapter, completely described examples of different systems test-
ing are collected.

• “Systems that provide API” section reviews testing of programs that provide application pro-
gram interface, by the example of a system for queue operations.

Other documents

Additional information CTesK and supported test development technology can be found in other
documents, included in the CTesK 2.2 documentation set: “CTesK 2.2. Installation Instructions”,
“Using CTesK 2.2 with GCC. Getting Started” and “Using CTesK 2.2 with Microsoft Visual
C++®. Getting Started”, “CTesK 2.2. SeC Language Reference”.

Our site www.unitesk.com contains information on UniTesK, CTesK, and other tools supported
UniTesK.

Any questions on UniTesK technology and CTesK usage can be addressed to
support@unitesk.com.

Conventions

Terms of the main concepts along with parts of the text, containing important information, are
shown in italics.

Links to sections of this document and to other CTesK documents are shown as “italicized text in
quotes”.

Examples of SeC code are shown in formatted paragraphs.

Fragments of code in the main text are shown in fixed-width font. SeC keywords are shown
in semi bold fixed-width font.

Menu items, commands, and files and directories names are shown in semi bold font.

5

http://www.unitesk.com/
mailto:support@unitesk.com

SeC language

SeC language

General information

SeC completely supports ANSI C standard. Additionally, specification data types, types and
variables with invariants are introduced, along with four kinds of functions: specification func-
tion, reactions, mediator functions, and scenario functions. These types, invariants and functions
are defined in specification files with .sec extension. Specification header files, that contain dec-
larations of specification types and functions should be located in the files with .seh extension.

Specification header files are included to specification files by means of #include C preproces-
sor command. Specification files may also contain usual C functions, required for various auxil-
iary purposes. When use of data types, constants, variables and functions is necessary, usual C
header files are included.

For the convenience of writing and reading of logical expressions, the implication operator => is
additionally introduced in SeC, which is a binary infix operator, whose priority is below that of
the disjunction operator ||, but is above the priority of the conditional operator ?:. The expres-
sion x => y is equivalent to the expression !x || y, and in the process of its evaluation, similar
to evaluation of other logical operators, the rules of short logic are applied. The implication op-
erator is associative from left to right, i.e. the expression x => y => z is equivalent to the ex-
pression (x => y) => z.

Data types

SeC language fully supports C data types. Besides, additional data types and their kinds are in-
troduced in SeC:

6

CTesK 2.2 User’s Guide

• Boolean type bool for presentation of logical expressions, and true and false constants.

• Specification types, that integrate the types of C with basic operations with the data of the
types: creating, copying, comparing, destroying (refer to subsection “Specification types”).

• Invariant types or subtypes are the data types, which ranges are the subranges of other data
types. The latters are called supertypes for these data types. A subrange is defined by means
of constraints, specified in type invariant (refer to subsection “Type invariants”).

SeC allowable types
Only the following data types are acceptable for arguments and return values of specification
functions, deferred reactions, and mediator functions, for iteration variables and scenario state
variables, and for global variables used in the above functions:

• Arithmetical types (int, char, double, ...).

• Enumerated types (enum), the range of which, unlike C, is limited to their constants and may
not contain an arbitrary integer value.

• Typed pointer. A pointer to any allowable type. The pointer is assumed to be either equal to
zero, or point to a single value of a corresponding type. Structure of pointers must be tree-
type, i.е. it must not contain undirected cycles.

• Non-typed pointer (void*). Values of the type are interpreted simply as an address of a cer-
tain memory cell.

• Functional pointer. Values of the type are interpreted simply as an address of a certain func-
tion.

• Structural type. The structure should be of a complete type, i.e. the definition of its body
must be visible in the point of its usage. Structure fields must be of allowable types.

• Fixed length array. The elements of the array must be of an allowable type.

The same constraints are applied to the basic types in definitions of the types with invariants, as
well as to the types of variables with invariants. Such constraints allow the test system to handle
data of such types automatically: to allocate and free memory, copy and compare values.

Hereinafter, the types that are allowable in the above-mentioned cases are called SeC allowable
types.

Specification data types
Often the constraints imposed by allowable types are excessively rigid. For instance, a pointer
used as an array reference or recursive data structures with cycles are not allowable types. In or-
der to overcome such constraints, the specification types are used.

Besides, the specification types are necessary for CTesK test system supporting library (refer to
“CTesK test system supporting library” chapter of “CTesK 2.2: SeC Language Reference”).

Specification data type integrates a C data type with basic operations to handle data of this type:
creating, copying, comparing and destroying.

The values of specification types are always stored in the dynamic memory and accessible only
via specification references, i.e. the pointers of corresponding types that must either be zero, or
point to an allocated and initialized memory. In other words, declarations of variables and pa-

7

SeC language

rameters of the specification types themselves (not references to them), as well as immediate use
of specification types in structures, union, and arrays definitions, is not allowed.

A specification reference automatically gets a zero value if it is not initialized explicitly in the
declaration.

Specification references are dereferenced similar to pointers in C, by means of the dereferencing
operators * and ->. The result of dereferencing is l-value of the same type as the basic type used
in the definition of the specification type, or as the type of the field of the specification structure
(refer to “Creating new specification types” subsection).

It is not allowed dereferencing of zero references (it will lead to a fault in execution time).

It is not allowed dereferencing of specification references, which are returned by function calls,
without assigning returned references into variables (it will lead to memory leaks or a fault in
execution time).

List* l = create(type_List, type_Integer)/* List — library
 specification type
 */;
Integer* spec_i/* Integer — library specification type */;
int i;

add_List(create(type_Integer, 1));
i = *get_List(0); /* invalid use */
spec_i = get_List(0);
i = *spec_i; /* i is equal to 1 */

typedef specification struct {int a; int b;} IntPair ={};

IntPair* ip = create(type_IntPair, 1, 1);
int ai = create(type_IntPair, 1, 1)->a; /* invalid use */

ai = ip->a; /* ai is equal 1 */

It is not allowed address arithmetic operations over the references and their indexing.

It is allowable to compare addresses in the references by C operators == and !=.

It is not allowed comparing specification references, which are returned by function calls, with-
out assigning returned references into variables (it will lead to memory leaks).

List* l = create(type_List, type_Integer) /* List — library
 specification type
 */;
Integer* spec_i/* Integer — library specification type */;
int i;

add_List(create(type_Integer, 1));
spec_i = get_List(0);
if(get_List(0)!= NULL) /* invalid use */
if(spec_i != NULL)
 i = *spec_i; /* i is equal to 1 */

Data types of specification references can only be casted to pointers to void or Object types
(discussed below), as well as to the specification references of compatible specification types.
The specification types are considered to be compatible if they are the subtypes of the same
specification type.

Management of the memory, to which specification references refer, is automated through the
mechanism of references computing with tracking of cycling references. When specification ref-
erences are used in the assignment statements, operations of passing of references as the function

8

CTesK 2.2 User’s Guide

arguments, returning of a reference from a function, exit of a reference from the visibility scope,
reference counters are altered automatically. The memory that has been allocated for the value of
a specification type, will then be automatically deallocated as the reference counter is zeroed to
such value.

Usage of the pointers to specification references and aggregate types of C, which contain speci-
fication references, is not recommended for, in such cases, automatic altering of reference count-
ers is not supported.

In SeC, the built-in specification type Object is defined is an incomplete specification type. It is
basic type for all specification types, but values of the type can not exist. Reference type Ob-
ject* is applied similarly to void*. A reference to any specification type may be casted to a ref-
erence to Object and vice versa. If, in case of an inverse cast, reference type of value is not
compatible with the type to which the cast is performed, then the system behavior is not defined.

The functions that implement basic operations with the values of specification types are located
in the library of specification types of CTesK (refer to “Specification types library” section).

Function of reference creation
Object* create(const Type *type, ...)

As the first parameter, the function receives a pointer to a specification type descriptor. The de-
scriptor constant of the specification type always has the identifier that is compiled of the name
of a type with the type_ prefix:

const Type type_name_of_specifiction_type;

The remaining parameters are those of type initializing. They differ for various types and are
passed in a list of the va_list* type to the function of the specification type initialization (refer
to “Creating new specification types” subsection).

The function allocates memory for the value of the specification type, fills it with zeros, invokes
the type initialization function, passing to it the received values of the type initialization parame-
ters in a list of the va_list* type, and returns the pointer to the allocated and initialized mem-
ory.

Integer* i = create(&type_Integer, 10);
String* str = create(&type_String, "a string");

In the code above, references of the library specification types Integer and String are created
and initialized, which are, respectively, the specification representation of the C built-in type int
and of the string specification type (refer to “Library of Specification Types” section). When a
reference of the Integer* type is created, an integer value should be passed to the function cre-
ate(), which will be stored according to the reference. When a reference of the String* type is
created, a normal string of C must be passed.

Functions copying values by references
void copy(Object* src, Object* dst)

The function copies the data stored by the reference src, to the location of the data by the refer-
ence dst. The references must be of nonzero value and belong to the same type, in other words,
they must have similar type descriptors. If these conditions are not complied with, termination of
the program will occur in the execution time, accompanied with an error message. The copy()
function fills the memory pointed by the reference dst with zeros before it calls the function of
coping specification type.

SpecificationType* ref1 = create(...);
SpecificationType* ref2 = create(...);
...
copy(ref1,ref2);

9

SeC language

In the example above, the references ref1 and ref2, after initialization, refer to different values
of the SpecificationType specification type. As soon as the copy()function is invoked, the
value of the reference ref2 becomes equivalent to that of the reference ref1.
Object* clone(Object* ref)

The function allocates memory for a value of the type, to which ref refers, initializes the allo-
cated memory with the value equivalent to that of the reference ref, and returns the pointer to
the allocated and initialized memory.

SpecificationType* ref1 = create(...);
SpecificationType* ref2 = clone(ref1);

Values of the references ref1 and ref2 become equivalent after invoking clone().

Functions comparing values by references
int compare(Object* left, Object* right)

When the values of the references passed are equivalent, the function returns a zero value. Oth-
erwise, the function returns a non-zero value, which may be interpreted depending on the type of
the values being compared. For instance, in respect to String library type, the result will be
similar to that of the function strcmp() for char* type of C language. If the parameters are of
incomparable types, i.e. the references’ types are not equivalent, are not subtypes of the same
type, and the type of one reference is not the subtype of the second reference’s type (refer to
“Type invariants” subsection), then the function returns a non-zero value. If one of the references
is zero, and the other is not, a non-zero value will be returned. If both the references are zero,
then zero will be returned.

/* creating two references of SpecificationType* type */
SpecificationType* ref1 = create(&type_SpecificationType);
SpecificationType* ref2 = create(&type_SpecificationType);
...
/* comparing values */
if (!compare(ref1,ref2)) {/* values are equivalent */
 ...
}
else {/* values are not equivalent */
 ...
}

bool equals(Object* self, Object* ref)

The function returns either the true value, in the case the values of the references passed are
equivalent, or false otherwise. When the parameters are of different types, the function returns
false. If one of the references is zero, and the other is not, it returns false. If both the refer-
ences are zero, true will be returned.

/* creating references of SpecificationType* type */
SpecificationType* ref1 = create(&type_SpecificationType);
SpecificationType* ref2 = create(&type_SpecificationType);
...
if (equals(ref1,ref2)) {/* values are equivalent */
 ...
}
else {/* values are not equivalent */
 ...
}

Function stringifying value by reference
String* toString(Object* ref)

The function returns the reference to the value of String type, i.e. the specification presentation
of a string type.

10

CTesK 2.2 User’s Guide

/* creating a reference of SpecificationType* type */
SpecificationType* ref = create(&type_SpecificationType);
/* reference to a value of String type */
String* str;
...
/* stringifying *ref */
str = toString(ref);
/* print it out */
printf("*ref == %s\n", toCharArray_String(str);
...

In the code above, the library function toCharArray_String()is used, which returns the string
content in a form of the array of char type, which ends with the zero value '\0'. The function
returns a pointer to the internal data accessible via the passed reference of String* type. There-
fore, on one hand, free()cannot be invoked for the returned pointer, and on the other hand, the
pointer may not be used after destroying of the value of the reference passed.

Creating new specification types
Specification types are declared with the help of usual C typedef construct marked with the SeC
keyword specification.

Declaration of a specification type
specification typedef basic_type new_type;

is different from its definition, which should contain an initializer:
specification typedef basic_type new_type = {
 .init = pointer_to_initialize_function
, .copy = pointer_to_copy_function
, .compare = pointer_to_compare_function
, .to_string = pointer_to_stringify_function
, .enumerate = pointer_to_enumerate_function
, .destroy = pointer_to_destroy_function
};

Prior to use of a specification type it must be declared or defined in each translation unit.

Definition of a specification type must occur only once, and only in one of the translation units
that are integrated in a united system.

During definition of a specification type, none of the following may be used as the basic type:

• specification types, incompletely defined structures and arrays with unknown length;

• structures, unions, and arrays with fixed length, where elements of the above-defined types
are contained;

• pointers to all of the above-listed types, other than specification references.

It is acceptable to use incompletely defined structures in declarations of specification types.

Within definition of a specification type, an initializer determines which functions will be ap-
plied to the basic operations with the data of the specification type.

Field init has the type Init:
typedef void (*Init)(void*, va_list*);

According to the field, the function of specification type initializing is invoked from create()
library function in the process of creating a reference (refer to “Function of reference creation”
subsection). Within the first argument, it receives a pointer to the allocated area of memory

11

SeC language

which must be initialized. Within the second argument, a list of parameters is passed, based on
which the data of specification type are initialized. The list of the parameters is built up of the
parameters of create()function, following the first parameter, a type descriptor. Therefore, the
parameters of create()function should, by the types and order, correspond to those expected in
the specification type initializing function. The type descriptor (a global constant of Type type) is
implicitly defined or declared in the process of defining or declaring the specification type, and
has the name, which consists of the type name and the prefix type_: type_type_name.

Field copy has the type Copy:
typedef void (*Copy)(void*,void*);

According to the field, the function of copying the value of the given specification type is in-
voked from the library functions copy() and clone() (refer to “Functions copying values by
references” subsection). The function of copying specification type is invoked if the references
passed to the function copy() or clone() are non-zero. With the first parameter, it receives a
reference, the value of which must be copied to the memory area according to the reference,
passed to it within the second parameter.

Field compare has the type Compare:
typedef int (*Compare)(void*,void*);

According to this field, the function of comparing the values of the given specification type is
invoked from the library functions compare() and equals() (refer to “Functions comparing
values by references” subsection). The function of comparing specification type is called if the
references passed to the functions compare() or equals(), are non-zero and the reference types
are either similar, or subtypes of the same type, or if the type of one reference is a subtype of an-
other reference (refer to “Type invariant” subsection). References as parameters are passed to the
function in the same order as they have been passed to the function compare() or equals().

Field to_string has the type ToString:
typedef String* (*ToString)(void*);

According to the field, the function of constructing a string presentation of the given specifica-
tion type is invoked from the library function toString() (refer to “Function stringifying value
by reference” subsection). The stringifying function is invoked if the reference transferred to
toString() is non-zero.

Field enumerate has the type Enumerate:
typedef void (*Enumerate) (void*,void(*callback)(void*,void*),void*);

According to the field, the function of enumerating references of specification types that are con-
tained in the value of the given specification type, is invoked. The function is applied to resolu-
tion of specification references cycles in the process of automatic management of the dynamic
memory.

Field destroy has the type Destroy:
typedef void (*Destroy)(void*);

According to the field, the function of deallocating resources is invoked, after zeroing of the
counter of references to the specification type value.

If the basic type in definition of a specification type is allowable SeC type (refer to “SeC allow-
able types” subsection), then initialization of any field may be omitted. In such case, the function
by default will be applied for a corresponding basic operation with the specification type value.

12

CTesK 2.2 User’s Guide

Function of initialization by default
The function of initialization by default for all the specification types defined on the basis of
simple types (other than composite ones), has a single additional parameter of the basic type. It
initializes the value of a specification type through deep copying of the parameter, with the con-
sideration given to possible pointers and specification references cycles. The function of initializ-
ing structure specification types has additional parameters, the types and the order of which co-
incide with the types and the order of the fields of the basic structure. Fields by the passed refer-
ence are initialized through deep copying of the parameters passed. The function of initializing
specification types defined on the basis of fixed-length array has one additional parameter, which
acts as the pointer to the set of values of the type of the array elements in an amount that coin-
cides with the length of the array. The array by the passed reference is initialized through deep
copying of each value by the received pointer to the element of the array that corresponds to it.
The technique of copying used in the initialization function, coincides with that used in the func-
tion of copying by default.

Function of copying by default
The function of copying by default provides deep copying, taking into account possible pointers
and specification references cycles, which a reference being copied contains:

• values of allowable simple types of C, other than typed pointers, are copied byte by byte;

• specification references are copied with the use of the function of copying a corresponding
specification type;

• typed pointer are interpreted to be the pointers to a single value, which does not depend on a
location in the memory, and, therefore, a single value under the non-zero pointer is copied
according to the rules enumerated in this list;

• values of composite types are copied by means of application of the above-listed rules to
each of the elements that compose them.

Function of comparison by default
The function of comparing by default compares the basic type values in the following way:

• arithmetic types, functional pointers and non-typed pointers are compared byte by byte;

• typed pointers are considered as the pointers to a single value that does not depend on its lo-
cation in the memory, in other words zero values are always considered to be equal, a non-
zero value and a zero value are always unequal, and non-zero values are equal if and only if
the values are equal, which they point at, and the values by the pointers are being compared
under the rules of this list;

• specification references are compared with the assistance of compare() library function of
comparing;

• composite types are compared with the application of the present rules to every one of their
individual elements.

Function of stringifying by default
The stringifying function by default returns the string presentation of the basic type value:

• for arithmetic types—a numeric value;

• for untyped and functional pointers—address;

• for typed pointers—either NULL, or string presentation of a value by a non-zero pointer,
marked with its address;

• for specification references—the result of invoking of toString() library function;

13

SeC language

• for structural types—concatenation of string presentations of the structure fields, divided
with commas, framed with curled braces, and with the word “struct” prior to it;

• for the fixed length array—concatenation of string presentations of array elements, divided
with commas, and framed with square brackets.

Function of enumeration of inner specification references by default
The function of enumeration of inner specification references by default does not act if a basic
type is a simple non-specification type. In the case when a basic type is a specification reference,
the function through the passed functional pointer callback is called with a specification refer-
ence and auxiliary parameter par, which have been passed to the function of enumeration of in-
ner specification references. If a basic type is composite, these rules apply to each of its compo-
nent.

Function deallocating resources by default
The function of deallocating resources by default:

• does not act, provided a basic type is a arithmetic, functional, or untyped pointer;

• if a basic type represents a specification reference, the counter of references to its value is
reduced by a unity;

• if a basic type represents a typed pointer, then the value by a non-zero pointer is processed
according to the listed rules, following which the function free()is called for the pointer it-
self;

• if a basic type is composite, this rules apply to each component.

If in definition of a specification type the basic type represents an allowable SeC type (refer to
“SeC allowable types” subsection), and the default functions of all basic operations implement
the sufficient functionality, then an empty initializer is used in definition of the specification
type.

specification typedef struct {int x; int y;} Point = {};

Point *pt2, *pt1 = create(&type_Point, 1, 2); /* pt1->x == 1,
 pt1->y == 2*/
String* s1;
...
pt2 = clone(pt1); /* pt2->x == 1, pt2->y == 2*/
pt1->x = 10; /* pt1->x == 10, pt1->y == 2*/
s1 = toString(pt1); /* toCharArray_String(s1)=="struct { 10, 2 }" */
...
if(equals(pt1, pt2)) /* if(pt1->x == pt2->x && pt1->y == pt2->y) */
 ...

In the example above, the specification type Point is created on the basis of the structure that
contains two fields of the type int. In definition of the type, an empty initializer is used. That is
why for implementation of the basic operations with the data of this type, the default functions
are used. When creating a reference of the type Point*, the values used for initiation of the
fields of the basic structure should be passed to create()function (refer to “Function of initiali-
zation by default” subsection). After creation of a reference of the type Point*, it may be han-
dled similar to a basic structure pointer.

For the purpose of creation the structures of data with complex topology, for instance, as in case
with definition of recursive structures, it is recommended to use only specification references.

14

CTesK 2.2 User’s Guide

struct link;

specification typedef struct link Link;
struct link
{
 Link* next;
 int item;
};

specification typedef struct link Link = {};
...
Link* l1 = create(&type_Link, NULL, 1)
 , l2 = create(&type_Link, NULL, 2);

l1->next = l2;

In the above code fragment, the specification type Link is defined which implements a unidirec-
tional list. When the field next of the reference l1 is assigned a value of the reference l2, an
automatic increase of the reference counter occurs by the value of reference l2. That is why after
destroying of the reference l2, the value that it refers to, is not destroyed.

When a recursive structure that contains a non-specification pointer to itself is used in definition
of the type Link, correct management of the dynamic memory will be more difficult.

specification typedef struct link {
 struct link* next;
 int item
 } Link = {};
...
struct link* s = malloc(sizeof(struct link));
Link* l = create(&type_Link, s, 1);
...
free(s);

In the above fragment of the code, after invocation of free() for pointer s, the filed next of the
reference l will point at the deallocated memory. In order to avoid such problems, one should
define special functions of initializing and destroying for the type Link.

If a default function of a certain basic operation does not implement functionality, that is neces-
sary for a specification type being defined, then, for this operation, a special function must be
defined, the pointer to which will initialize a corresponding field within the type definition ini-
tializer. Such necessity mostly appears, when a basic type in definition of a specification type
represents a pointer to the first component of a dynamic array, or a union, or a pointer to one of
such types, a structure, or a fixed length array, which contain elements of the listed types.

Function of initialization of specification type
void name_of_initializing_function(void* p, va_list* arg_list)

The function does not have a return value. Within the first argument, the function receives a
pointer of the type void* to the area of the memory, allocated for the purpose of storing the data
of the specification type and filled with zeros, and initializes the area with the values passed
within the second argument in the list of the type va_list*. When necessary, the additional
memory is allocated within the function with aim to store the data.

15

SeC language

struct integer_seq {
 int length;
 Integer* *items;
};

void init_IntegerSeq(void* ref, va_list *arg_list) {
 struct integer_seq *is = (struct integer_seq*)ref;

 is->length = va_arg(*arg_list, int);
 is->items = calloc(is->length, sizeof(Integer*));
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 ...
};

In the example above, the specification type IntegerSeq is created, which is intended to store
sequences of unknown length, containing references of the type Integer*, i.e. references to the
values of the library specification type Integer, which is a specification representation of the
built-in type of C int type. Type IntegerSeq is defined on the basis of the structure struct
integer_seq with two fields: the sequence length (length) and the pointer to an array that con-
tains the very sequence (items).

The library function create() allocates memory only for the purpose of storing values of the
structure struct integer_seq itself. The function of initializing by default (refer to “Function
of initialization by default” subsection) for such structure specification type has two parameters
of initialization: the first one of the type int and the second of the type Integer**. In this case,
the second parameter in the function of initialization by default is interpreted as a pointer to a
single value. Therefore, the field items of the default function is initialized by the pointer to the
reference, which contains a copy of the reference value, passed via the pointer. In our case, such
functionality is unacceptable. That is why it is necessary to apply a special function of initializ-
ing init_IntegerSeq, which implements a sufficient functionality.

The function init_IntegerSeq expects the passed list of the type va_list* contains the single
parameter of initiation of the type IntegerSeq, i.e. the sequence length. Its value initializes the
field length by the initialized reference. The second field items is initialized by the pointer to
the dynamically allocated and filled with zeros area of the memory sufficient to store the refer-
ence sequences of necessary lengths.

The pointer to initializing function init_IntegerSeq initializes the field init in definition of
the type IntegerSeq.

Function deallocating resources of specification type
void name_of_deallocating_function(void* p)

The function without a return value has one parameter of the type void* that represents a pointer
to the memory location, where data of the specification type are stored. The function must deal-
locate only additional memory, allocated within the function of initialization the given specifica-
tion type.

16

CTesK 2.2 User’s Guide

void destroy_IntegerSeq (void *ref) {
 struct integer_seq* is = (struct integer_seq*)ref;
 int i;

 for(i = 0; i < is->length; i++)
 is->items[i] = NULL;
 free (is->items);
}
specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 ...
 .destroy = destroy_IntegerSeq
};

In the example above, the function deallocating resources destroy_IntegerSeq for the specifi-
cation type IntegerSeq is defined. Definition of the function is necessary for the function of de-
allocating resources by default (refer to “Function deallocating resources by default” subsection)
for composite types interprets the field items as the pointer to the single value of the type Inte-
ger*, and therefore the reference counter decreases only for the first reference of the sequence,
following which free() for the pointer items is invoked.

The function destroy_IntegerSeq reduces the reference counter by a unity for each element of
the sequence by the passed reference, after which it deallocates memory by the pointer items.
Reference counters are reduced by means of assigning the value NULL to the references.

The pointer to the function deallocating resources destroy_IntegerSeq initializes the field
destroy in the definition of the type IntegerSeq.

Function of copying specification type
void name_of_copying_function(void* src, void* dst)

The function without a return value has two parameters of the type void*. The function must
copy into a sufficient depth the data values by the pointer src passed within the first parameter to
the memory area filled with zeros by the pointer dst passed within the second parameter.

void copy_IntegerSeq (void *src, void *dst) {
 struct integer_seq *is_src = (struct integer_seq *)src
 , *is_dst = (struct integer_seq *)dst;
 int i;

 is_dst->length = is_src->length;
 is_dst->items = calloc(is_src->length, sizeof(Integer*));
 for(i = 0; i < is_src->length; i++)
 is_dst->items[i] = clone(is_src->items[i]);
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .copy = copy_IntegerSeq,
 ...
 .destroy = destroy_IntegerSeq
};

In the example above, the function of copying vales of the type IntegerSeq is defined.
Definition of the function is necessary, for the function of copying by default (refer to “Function
of copying by default” subsection) interprets the field items as a pointer to the single value of the
type Integer*, i.e. only the first value by the reference of the first element of the sequence src
is copied. The function copy_IntegerSeq provides deep copying of the total sequence, through
the library function of copying clone()(refer to “Functions copying values by references”
subsection). Initialization by zeros of the memory allocated for is_dst->items is necessary to
ensure during assigning within the cycle is_dst->items[i] = clone(is_src->items[i]), an

17

SeC language

attempt to reduce the reference counter by a nonexistent value of the reference is_dst-
>items[i] does not occur.

The pointer to the function of copying initializes the field copy in definition of the type
IntegerSeq.

Function of comparing specification type
int name_of_comparing_function(void* left, void* right)

The function has a return value of the type int and two parameters of the type void*. The func-
tion compares the values by the passed pointers and returns zero, if the values are equivalent, or
a non-zero value otherwise. A non-zero value may depend on relation of the values by the refer-
ences passed.

int compare_IntegerSeq(void* left, void* right) {
 struct integer_seq *isl = (struct integer_seq *)left
 , *isr = (struct integer_seq *)right;
 if (isl->length != isr->length) return isl->length - isr->length;
 else {
 int i, res;
 for(i = 0; i < isl->length; i++) {
 res = compare(isl->items[i], isr->items[i]);
 if(res) return res;
 }
 }
 return 0;
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .copy = copy_IntegerSeq,
 .compare = compare_IntegerSeq,
 ...
 .destroy = destroy_IntegerSeq
};

In the example above, the function of comparing values of the type IntegerSeq is defined.
Definition of the function is necessary, as the function of comparing by default (refer to
“Function of comparison by default” subsection) interprets the field items as a pointer to the
single value of the type Integer*, i.e. only the values by the references of the first elements of
the sequences left and right are compared.

The function of comparing compare_IntegerSeq ensures comparison of sequences element by
element. If the sequences are of different length, then the difference of lengths of sequences by
the references left and right is returned. If the length of the sequences are equal, then the se-
quences are compared element by element with the use of the library function compare(). In this
case, if all elements of the sequences coincide, the result is zero, otherwise the result of compari-
son of the first non-matching elements is returned.

The pointer to the function of comparing initializes the field compare in definition of the type
IntegerSeq.

18

CTesK 2.2 User’s Guide

struct one_dim_simpl {double x1; double y1; double x2; double y2;};
int compare_OneDimSimplex(void* left, void* right) {
 struct one_dim_simpl *lv = (struct one_dim_simpl*)left
 , *rv = (struct one_dim_simpl*)right;
 double lx = lv->x2 – lv->x1
 , ly = lv->y2 – lv->y1
 , rx = rv->x2 – rv->x1
 , ry = rv->y2 – rv->y1;

 double res = sqrt(lx * lx + ly * ly) – sqrt(rx * rx + ry * ry);
 return res > 0.0 ? 1 : (res < 0.0 ? –1 : 0);
}

specification typedef struct one_dim_simpl OneDimSimplex = {
 .compare = compare_OneDimSimplex;
}

In the example above, the specification type OneDimSimplex is created, which represents a seg-
ment in plane. The segment is specified by the coordinates of two points in plane: two coordi-
nates of the first point (x1 and y1) an two coordinates of the second point (x2 and y2). The seg-
ments are equal if their lengths match. The function of comparing by default implements element
by element comparison of the components of the specification types. In the present case, the
function of comparing by default will return zero, when a value of each field by the first refer-
ence coincides the value of a corresponding field by the second reference. Therefore, for the type
OneDimSimplex, a special function of comparing compare_OneDimSimplex should be imple-
mented, and the field compare within the type definition initializer should be initialized by a
pointer to the function. The function compare_OneDimSimplex computes lengths of the seg-
ments based on the passed references and returns either 0, if they are equal, or 1, if the first seg-
ment is longer than the second one is, or –1, if the first segment is shorter than the second one is.

Function of stringifying specification type
String* name_of_stringifying_function(void* p)

The function has a return value of the type String* and a parameter of the type void*. The
function returns a reference to the specification type String (refer to “Library of specification
data types” section of “CTesK 2.2: SeC Language Reference” document), by which a string
presentation of the specification type should be contained, that corresponds to the value by the
reference, passed within the single parameter of the function.

19

SeC language

String* to_string_IntegerSeq(void *ref) {
 struct integer_seq *is = (struct integer_seq *)ref;

 String *start = create_String ("<");
 String *end = create_String (">");
 String *sep = create_String (", ");

 String *res = start;

 if (is->length > 0) {
 int i;
 for (i = 0; i < is->length; i++) {
 if (i > 0) res = concat_String(res, sep);
 res = concat_String(res, toString(is->items[i]));
 }
 }
 return concat_String (res, end);
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .copy = copy_IntegerSeq,
 .compare = compare_IntegerSeq,
 .to_string = to_string_IntSeq,
 ...
 .destroy = destroy_IntegerSeq
}

In the example above, the stringifying function to_string_IntegerSeq for the type is defined.
Definition of the function is necessary, for the stringifying function by default (refer to
“Function of stringifying by default” subsection) interprets the field items as a pointer to the
single value of the type Integer* and creates a string which contains, within curly braces and
divided by commas, the value of the field length and a string presentation of the value by the
reference of the first element of the sequence.

The function to_string_IntSeq returns the reference of the type String*, which contains a
string, where, within angle bracket ('<' and '>'), string presentations of the values by the
references of all elements of the sequence are enlisted divided by commas, with preservation of
their order. The function to_string_IntSeq utilizes functions create_String() and
concat_String(), described in details in “Library of specification data types” section of
“CTesK 2.2: SeC Language Reference” document.

The pointer to the function to_string_IntSeq initializes the field to_string in definition of
the type IntegerSeq.

Function of enumeration of inner specification references of specification type
void name_of_enumeration_function(*Enumerate)
 (void* p, void (*callback)(void*,void*),
 void* par
)

The function of enumerating references should invoke a callback function, the pointer to which
is passed to it in the second argument, for each reference of the specification type. In all invoca-
tions of a callback function, the enumerated references are passed in the first argument, the sec-
ond argument passes parameters via the pointer par, passed within the third argument of the
function of enumerating.

20

CTesK 2.2 User’s Guide

void enumerate_IntegerSeq(void* p
 , void (*callback)(void*,void*)
 , void* par
) {
 struct integer_seq *is = (struct integer_seq*)p;
 int i;

 for(i = 0; i < is->length; i++)
 callback(is->items[i], par);
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .copy = copy_IntegerSeq,
 .compare = compare_IntegerSeq,
 .enumerate = enumerate_IntegerSeq,
 .destroy = destroy_IntegerSeq
};

In the example above, the function of enumerating the references enumerate_IntegerSeq for
the type IntegerSeq is defined. Definition of a special function of enumerating the references is
necessary, for the function of enumerating references by default (refer to “Function of enumera-
tion of inner specification references by default” subsection) does not provide enumeration of the
references, accessible via the pointer to array.

A callback function is invoked within the function enumerate_IntegerSeq for all references of
the sequence, which are accessible via the field items of the type Integer**, by a pointer
passed to the enumeration function enumerate_IntegerSeq within the second parameter. The
first parameter of such invocations passes enumerated specification references, the second
parameter passes the pointer passed in the third parameter to the function of enumerating
enumerate_IntegerSeq.

Invariants
In a specification, the requirements for a system under test are contained, including the require-
ments for data. Such requirements consist in limitation of a range of allowable values and may
be imposed both on a certain data type as a whole (by means of type invariants), and on the val-
ues of individual global variables (with the use of variable invariants).

Invariants may be also interpreted as common part of preconditions and postconditions of speci-
fication functions, which utilize the data of relevant types.

Invariants are automatically checked within the specification functions prior to the check of a
precondition:

• for function parameters

• for expressions, described in the reads or updates access constraints

and prior to check of a postcondition:

• for function parameters

• for expressions, described in the writes or updates access constraints

• for return value

Additionally, the method of explicit check of an invariant is provided.

21

SeC language

In checking of invariants of composite types, the check of invariants for all of its components is
automatically executed.

Type invariant
A type invariant introduces the constraint for the range of values of a certain type. A resulting
new type, the range of which is the subrange of a basic type, is called a subtype. The following
constraint is imposed on a basic type: it must be an allowable type.

The type with invariant is defined with the use of the typedef construction, marked with the
keyword invariant:

invariant typedef int Nat;

In this case, int represents a basic type, and Nat represents the subtype defined. Here, unlike a
usual typedef construction of C, which only introduces a new identifier for the previous type, a
new type with an own range is defined.

Constraints for the range of a subtype are defined in the invariant construction, similar to defi-
nition of functions with a single parameter of the defined subtype. The function returns a boolean
value: true, if a value passed satisfies the constraints, or false, if it does not. As far as the type
of a return value is fixed, it is not indicated explicitly:

invariant(Nat n) {
 return n > 0;
}

If a specification type is used as a basic type, the parameter of the invariant function will have
the type of a relevant specification reference, for values of specification types are only accessible
via pointer:

invariant typedef Integer Natural;
invariant(Natural* n) {
 return value_Integer(n) > 0;
}

At that, the functions of operating with a subtype will be assumed from definition of the basic
type.

The invariant function shall not have side effects: apparent data shall not be altered, and the dy-
namic memory allocated within the function shall be deallocated in the same place.

It is allowable to define new specification types with indication of an invariant:
invariant specification typedef int Natural = {};
invariant(Natural* n) {
 return *n > 0;
}

In such case, a subtype and a basic type coincide.

A specification type may not be defined on the basis of another specification type, but one may
create subtypes of specification types. Moreover, one may define subtypes for subtypes, owing to
which an hierarchy of types is created. In this case, for a value of subtype invariants of all parent
subtypes upward the hierarchy will be also checked.

An invariant of a variable of a relevant type may be checked explicitly using the function invari-
ant:

invariant typedef int Nat;
Nat n;
...
if (invariant(n)) ...

22

CTesK 2.2 User’s Guide

A subtype may be casted to a basic type; moreover, such transformation is executed implicitly. A
basic type may also be casted to a subtype. However, due to the fact that values of a subtype are
the subset of values of a basic type, such transformation should be written explicitly:

invariant typedef int Nat;
int i;
Nat n;
...
i = n;
n = (Nat)i;

A situation may appear, when the invariant of the type turns unsatisfied. If necessary it may be
checked explicitly after assignment.

Variable invariant
An invariant of a variable introduces constraints for a range of an individual global variable of an
allowable type.

A variable with an invariant is defined with the help of usual declaration or definition, with in-
variant keyword:

invariant int Qty;

Constraints for the range of a variable are defined within the invariant construction, similar to
definition of a function without parameters. The function returns a boolean value: true, of a
value of a global variant satisfies the constraints, or false, if it does not. As far as the type of a
return value is fixed, it is not indicated explicitly. The name of the variable, for which the invari-
ant is defined, is indicated in brackets:

invariant(Qty) {
 return Qty >= 0;
}

However, a variable is not a parameter of an invariant function. The function provides access
immediately to the value of a global variable. At that, the function shall not have side effects:
apparent data shall not be altered, and the dynamic memory allocated within the function shall be
deallocated in the same place.

A variable invariant may be explicitly checked with the help of invariant function:
invariant int Qty;
...
if (invariant(Qty)) ...

If the variable with an invariant has the type, for which the type invariant is defined, then the
type invariant will be checked first, and then goes the variable invariant.

Specifications

A specification represents a formal description of requirements to a system under test. Interface
functions of the system under test and its data, which represent its internal state, are defined.
Within a specification, behavior of the interface functions is described by specification functions,
while the state of the system is modeled by global state variables. Requirements to a tested sys-
tem are formulated as constraints for behavior of interface functions (in the form of precondi-

23

SeC language

tions and postconditions in specification functions) and for the data values (in the form of type
invariants and invariants of state variables).

Binding of specification functions and model data to the functions and data of an implementation
of system under test is performed through mediators.

Additionally, coverage criteria are derived from the specification (which are described in speci-
fication functions), which allow evaluating of testing completeness.

In the case of systems with deferred reactions, their behavior in response to outer actions consists
of immediate and deferred reactions. The former are described with usual specification functions,
while deferred reactions shall be added to the specification for the purpose of describing the lat-
ter. Binding of deferred reactions to a system under test is performed with the assistance of me-
diators and reactions catcher. Unlike specification functions, coverage criteria can not be speci-
fied for deferred reactions.

Specification functions
Specification functions describe behavior of interface functions of a system under test. In gen-
eral, a specification function defines behavior of a system under a certain influence on it via a
certain part of the interface.

Specification functions describe behavior in the form of data access constraints, preconditions,
coverage criteria and postconditions.

Declaration of a specification function consists of the keyword specification, function signa-
ture (in the general sense of C) and, possibly, of access constraints.

specification double sqrt_spec(double x);

Specification function body consists of three parts: a precondition (which may be omitted), cov-
erage criteria (which may be either in any or no amount) and a postcondition (which is necessar-
ily single).

A precondition checks applicability of a function to a given set of parameters values and state
variables. Coverage criteria divide behavior of the system into functionality branches. Both the
precondition and coverage criteria are executed at the pre-state, i.e. prior to interaction with the
system under test. Expression values at the moment are called pre-values.

Prior to computing a postcondition, the interaction with the system under test is executed
through invoking of a mediator. The postcondition checks compliance of the obtained results to
the expected ones. It is executed at the post-state, i.e. after interaction, and deals with post-values
of expressions.

specification double sqrt_spec(double x) {
 pre { ... }
 coverage C { ... }
 post { ... }
}

Access constraints define the way of applying parameters and global variables in the specifica-
tion function prior and after interaction with the system under test

In a general case, auxiliary code may be used within the body of a specification function between
the described blocks. If within curly braces typed with bold face, no extra code is present, they
may be omitted:

24

CTesK 2.2 User’s Guide

specification signature access_constraints {
 auxiliary_code_1_1
 pre { ... }
 {
 auxiliary_code_2_1
 coverage name_1 { ... }
 ...
 coverage name_n { ... }
 {
 auxiliary_code_3_1
 post { ... }
 auxiliary_code_3_2
 }
 auxiliary_code_2_2
 }
 auxiliary_code_1_2
}

Auxiliary code shall not have side effects: apparent data shall not be altered, and the dynamic
memory allocated within a code block, shall be deallocated either within the same block, or in
the block paired to it.

Specification functions are normally invoked in scenario functions. Invocation of a specification
function consists in checking of invariants in compliance with access constraints, checking of
the precondition, computing of covered branches in compliance with coverage criteria, execut-
ing of a testing interaction and synchronizing of model and implementation states in the media-
tor, secondary checking of invariants and checking of a postcondition. A specification function
returns a value computed in the mediator (provided it is not declared as void).

Deferred reactions
Deferred reactions describe behavior of the system under test in the event of deferred reacting on
outer influences. Deferred reactions describe behavior in the form of data access constraints,
preconditions and postconditions. Unlike specification functions, coverage criteria are not used
in the deferred reactions.

Declaration of a deferred reaction consists of the keyword reaction, function signature (in the
common sense of C) and, possibly, of access constraints.

reaction String* recv_spec(void);

Deferred reaction:

• never has parameters,

• should return a specification reference.

Deferred reaction body consists of two parts: a precondition (which may be omitted) and a post-
condition (which is necessarily single).

Precondition checks possibility of appearing of a reaction in a given state. Precondition is exe-
cuted in pre-state and has the access to pre-values of expressions only.

Postcondition checks compliance of the result obtained when reaction emerges, to the expected
one. It is executed in post-state after emerging of reaction and deals with post-values of expres-
sions.

reaction String* recv_spec(void) {
 pre { ... }
 post { ... }
}

25

SeC language

Access constraints define the way of applying global variables prior and after emerging of reac-
tion.

In a general case, extra code may be used in the body of deferred reaction between described
blocks. If, within the curly braces typed in bold face, there is no extra code, they may be omitted.

reaction signature access_constraints {
 auxiliary_code_1_1
 pre { ... }
 {
 auxiliary_code_2_1
 post { ... }
 auxiliary_code_2_2
 }
 auxiliary_code_1_2
}

Auxiliary code shall not have side effects: apparent data shall not be altered, and the dynamic
memory allocated within a code block, shall be deallocated either within the same block, or in
the block paired to it.

Deferred reaction can never be invoked explicitly, for it is initiated by the system under test.

Access constraints
Access constraints determine the way to applying of global variables and parameters in specifi-
cation functions and deferred reactions, as well as of expressions where the former are used.
Three types of access constraints are supported: reading (reads), writing (writes) and updating
(updates).

Constraints are written after the signature of a specification function or deferred reaction in a
form of a list of expressions, divided by commas, which is marked with one of keywords reads,
writes, or updates:

specification void root_spec(
 double a, double b, double c,
 double *x1, double *x2)
 reads a, b, c
 writes *x1, *x2;

Access constraint reads for a certain expression means that the value of the expression is not
updated in the result of interaction, i.e. the pre-value of the expression coincides with the post-
value.

Invariants for such expressions are automatically checked prior to checking of a precondition,
and, prior to checking of a postcondition it is checked whether the expression value has been al-
tered.

The access constraint writes for a certain expression means that the pre-value is not used in the
specification function and may be not determined, while the post-value is generated in the result
of interaction with system under test. Expressions with writes access may not be used in the
operator of pre-value @ (refer to “Postcondition” subsection).

Invariants for such expressions are automatically checked prior to checking of a postcondition.

The access constraint updates for a certain expression means that the pre-value of the expres-
sion is the input parameter, on which the behavior of the system may depend, while the post-
value is generated in the result of interaction and may not coincide with the pre-value.

26

CTesK 2.2 User’s Guide

Invariants for such expressions are automatically checked prior to checking of both the precondi-
tion and the postcondition.

Expressions in the access constraints may be assigned with an identifier which is called an alias.
Subsequently, the alias may be used for access to the expression value, including that the opera-
tor @ may be applied to the alias:

specification void deposit_spec(AccountModel *acct, int sum)
 reads sum
 updates balance = acct->balance
{
 ...
 post {
 return balance == @balance + sum;
 }
}

Precondition
In interacting described by a specification function, behavior of the system under test may be not
defined in certain situations. In order to single out such situations, precondition is used. During
testing, precondition is checked every time when the specification function is invoked. Violation
of a precondition represents that the test is made incorrectly.

In the case of deferred reaction, the precondition defines if appearance of such reaction in the
given state is possible. During testing, precondition is checked every time when reaction appears.
When precondition is violated, incompliance between the system under test behavior and its
specification is registered.

Precondition is written in a form of instructions, included in curly braces and marked with the
keyword pre. Such instructions represent the body of the function that has the parameters similar
to those of either the specification function or deferred reaction, and returns the result of the type
bool, which indicates whether the precondition is satisfied.

specification double sqrt_spec(double x) {
 pre {
 return x >= 0.0;
 }
 ...
}

When the system behavior is defined for all values of input parameters and in any of model
states (or appearance of reaction is acceptable in any state), precondition may be omitted.

Precondition is evaluated prior to interaction with the system under test. Expression values at the
moment are called pre-values.

Prior to checking of precondition, invariants of parameters of specification function and expres-
sions described in the access constraints both reads and updates are automatically checked.

Precondition must not have any side effects: apparent data shall not be altered, and the dynamic
memory allocated within the precondition shall be deallocated in the same place.

Specification function precondition may be evaluated explicitly with the help of pre construction
(as a rule it is used in scenario functions so that a specification function with incorrect parameter
is not invoked):

if (pre sqrt_spec(-1.0)) ...

27

SeC language

Coverage criterion
A coverage criterion breaks down behavior of the system under test in branches of functionality.
Coverage criteria are used for the evaluating testing completeness: a task is put in testing to pass
each of the functionally branches at least once.

Coverage criterion is written in a form of instructions included in curly braces and marked up
with the keyword coverage and an identifier. Such instructions represent the body of the func-
tion which has similar parameters to those of the specification function, and returns a special
construction—a branch identifier and the string literal with the branch short description, which
are included in curly braces:

specification void root_spec(
 double a, double b, double c,
 double *x1, double *x2)
{
 double d = b*b – 4*a*c;
 ...
 coverage C {
 if (d < 0.0)
 return { N, "Negative discriminant" };
 else if (d == 0.0)
 return { Z, "Zero discriminant" };
 else
 return { P, "Positive discriminant" };
 }
 ...
}

For every set of pre-values of parameters and global variables, which satisfy the precondition,
the coverage criterion shall return a construction, which identifies the branch of functionality.
Otherwise, an error is registered in the process of test execution.

When not a single coverage criterion is defined in the specification function, it is considered that
a pseudo criterion with a pseudo branch take place.

Similar to precondition, a coverage criterion is computed prior to interacting with the system un-
der test and has access to pre-values of expressions. Coverage criterion shall not have any side
effects, i.e. it must not alter apparent data and shall deallocate the dynamic memory, which has
been allocated within it.

One of the coverage criteria may be declared as the default criterion, for which purpose the key-
word default is used:

specification int f_spec(int a) {
 ...
 default coverage C1 { ... }
 coverage C2 { ... }
 ...
}

If none of the coverage criteria of the specification function is declared as the criterion by de-
fault, the last defined criterion becomes the same. A default criterion may be established also at
the stage of execution with the use of the function
set_coverage_name_of_specification_function(). Such function receives the string pres-
entation of the criterion identifier and returns true, if the function performed successfully, or
false, if a criterion with such name does not exist:

set_coverage_f_spec("C2");

28

CTesK 2.2 User’s Guide

The quantity of functionality branches in the coverage criterion by default may be calculated
with the use of the function get_coverage_size_ name_of_specification_function(),
which has no parameters:

int num_of_branches = get_coverage_size_f_spec();

The number of a functionality branch achieved under the certain parameters in the default cover-
age criterion may be computed with the use of coverage construction:

int branch_num = coverage f_spec(10);

For the example of application of the above functions, refer to “Iteration by coverage criterion”
subsection.

Whenever repeated computation of expressions that specify breakdown to functionality branches
is necessary in postcondition or in coverage criteria, defined after the given coverage criterion,
the construction coverage(branch_identifier) may be used. The value of the construction is
the identifier of the covered functionality branch of the given coverage criterion. The construc-
tion may be used in if-else condition statements and in the switch statements of C language:

specification int f_spec(int a) {
 ...
 default coverage C1 {
 if (...)
 return { B1, "branch 1" };
 else
 return { B2, "branch 2" };
 }
 coverage C2 {
 if (coverage(C1) == B1) {
 ...
 } else {
 ...
 }
 }
 ...
}

Postcondition
Postcondition of a specification function is used to describe constraints, which the results of the
system under test performance should satisfy during interaction, described by the specification
function. During testing the postcondition is checked every time after interaction is performed. If
the postcondition is violated, inconsistency of the system under test behavior with its specifica-
tion is registered.

Deferred reaction postcondition describes constraints, which the results of interaction should sat-
isfy after emerging of the reaction. If the postcondition is violated, inconsistency of the system
under test behavior with its specification is registered.

Postcondition is written down in a form of instructions in curly braces and marked with the post
keyword. Such instructions represent the body of the function that has the same parameters as
the specification function, and returns the result of bool type. The value true indicates that be-
havior of the system under test conforms to the expected one (postcondition is met), while false
value indicates that the behavior differs from the expected one (postcondition is violated).

There must be always exactly one postcondition in the specification function and deferred reac-
tion.

29

SeC language

To access the value returned by the mediator of the specification function, identifier of the speci-
fication function (provided the specification function is not defined as void) is used. Similarly, to
access the registered value of reaction, identifier of deferred reaction is used.

specification double sqrt_spec(double x) {
 ...
 post {
 if (x == 0.0)
 return (sqrt_spec == 0.0);
 return (sqrt_spec >= 0.0 &&
 fabs((sqrt_spec*sqrt_spec - x) / x) < EPS);
 }
}

Postcondition is evaluated after interaction with the system under test. Actually, post keyword is
interpreted as the test interaction. Expressions values after interaction are called post-values.

Prior to checking of postcondition, invariants of the parameters of the specification function and
the expressions described in writes and updates access constraints, as well as the invariant of
the return value are checked automatically.

To access pre-values from postcondition, the unary operator @ is used. The expression under the
operator must have the allowable type and must be computable immediately before post key-
word (for the values of such expressions are automatically saved immediately before executing
interaction with the system under test). It is prohibited to use the operator @ for expressions that
have writes access.

specification void f(List* l/*List is a library specification type*/) {
 int j;
 post {
 int i;
 Object* pre_item;
 for(i = 0, j = 0; i < @size_List(l)/* valid use */; i++, j++) {
 pre_item = @get_List(l, i); /* invalid use: i is undefined
 out of post-block
 */
 pre_item = @get_List(l, j); /* invalid use: j has the only
 unknown value out of post-block
 */
 pre_item = get_List(@l, j); /* valid use*/
 if(equals(get_List(l, i), pre_item))
 return false;
 }
 return true;
 }
}

If it is necessary to provide access to pre-value of an expression of a not allowable type, one
should manually save the value of the expression in the local variable before post block (possi-
bly, use of proper existing specification type or creating a new one is better solution):

{
 char *s = "...", *pre_s;
 ...
 pre_s = strdup(s);
 post {
 return !strcmp(s, pre_s);
 }
 free(pre_s);
}

Postcondition must not have any side effects: it must not update apparent data, and the dynamic
memory allocated within the postcondition must be deallocated in the same place.

30

CTesK 2.2 User’s Guide

Mediators

Mediators are intended to bind a specification to the implementation of the system under test.

Mediators execute three tasks. First, they perform testing interaction, converting interaction pa-
rameters from model into implementation presentation. Second, they receive the result and con-
vert it from implementation into model representation. Third, mediators synchronize the model
state with that of the system under test implementation.

Mediators are implemented as mediator functions and catchers.

The table below shows which tasks are performed by which part of a mediator:

Testing Interaction
execution

Result
receiving

State
synchronization

without
deferred
reactions

call-block
of mediator function

call-block
of mediator function

state-block
of mediator function

with
deferred
reactions

— catcher state-block
of mediator function

Mediator function
Mediator function implements mediator by means of binding the specification function or de-
ferred reaction with the implementation.

Declaration of a mediator function consists of mediator for keywords, splitted by identifier of
the mediator function, and of a complete signature of a relevant specification function or de-
ferred reaction, including the access constraints:

specification bool push_spec(Integer* i) reads i updates stack_model;

mediator push_media for
 specification bool push_spec(Integer* i) reads i updates stack_model;

Mediator function body consists of two parts: call-block and state-block.

Within call-block, testing interaction is executed along with conversion of data from model into
implementation presentation and back. Call-block is necessary for mediators of the specification
functions and is not present in the mediators of deferred reactions (for interaction is initiated by
the system under test in the case of deferred reactions).

State-block brings the model state in compliance with the state of the system under test imple-
mentation. State-block may be omitted in the mediators of the specification functions and is
mandatory for the mediators of deferred reactions.

mediator push_media for
 specification bool push_spec(Integer* i) reads i updates stack_model
{
 call { ... }
 state { ... }
}

In a general case, extra auxiliary code may be used in the body of mediator function before and
after the above-described blocks:

31

SeC language

mediator identifier for specification_function_signature {
 auxiliary_code_1
 call { ... }
 state { ... }
 auxiliary_code_2
}

Auxilliary code may not have any side effects: apparent data must not be altered; the dynamic
memory allocated in the code block, must be deallocated either in the same place, or in the block
paired to it.

Mediator function shall be bind to the specification function (or deferred reaction)
with the help of the function set_mediator_specification_function_name()
(set_mediator_deferred_reaction_name()), which assumes the pointer to the mediator func-
tion. Normally, binding is executed in the initialization function of scenario:

set_mediator_push_spec(push_media);

If an error is revealed during mediator function execution (e.g. conversion of data from model
into implementation presentation and back is impossible), one should register it with the assis-
tance of the function setBadVerdict(), assuming the string with description of the situation
encountered:

setBadVerdict("Error description");

Call-block
Call-block is used only in the mediators of specification functions. The following operations are
performed in it:

• the parameters of the specification function are converted into implementation presentation

• interface function (or several functions) of the system under test is invoked

• the result of the interface function and its output parameters are converted from implementa-
tion presentation into model one

• model presentation of the result is returned from the call-block

Call-block is written in the form of instructions in curly braces and marked with call keyword.
Such instructions represent the body of the function, which has the parameters similar to those of
the relevant specification function, and returns the result of the same type as the specification
function has.

stack *stack_impl;
List* stack_model;

int push(stack*, int);
specification bool push_spec(Integer* i) reads i updates stack_model;

mediator push_media for
 specification bool push_spec(Integer* i) reads i updates stack_model
{
 call {
 return (bool)push(stack_impl, value_Integer(i));
 }
 ...
}

Call-block is executed by the testing system when invoking relevant specification function in the
point before post keyword.

32

CTesK 2.2 User’s Guide

State-block
State-block brings the model state in compliance with the state of the system under test imple-
mentation after executing of interaction or emerging of deferred reaction.

State-block is written in a form of instructions in curly braces and marked with state keyword.
Such instructions represent the body of the function without a return value, which has the same
parameters as the relevant specification function or deferred reaction has.

If the relevant specification function or deferred reaction has the return value type other than
void, then the access to this value can be obtained through the identifier of such function (reac-
tion).

When a system with open state is tested (i.e. when the testing system has the access to internal
data of the implementation), the state-block must bring the model state in compliance with the
implementation state:

stack *stack_impl;
List* stack_model;

int push(stack*, int);
specification bool push_spec(Integer* i) reads i updates stack_model;

mediator push_media for
 specification bool push_spec(Integer* i) reads i updates stack_model
{
 ...
 state {
 int k;
 clear_List(stack_model);
 for (k = stack_impl->size; k > 0;
 append_List(stack_model, create_Integer(impl_stack->elems[--k]))
);
 }
}

As far as building of the model state according to internal implementation state is similar for all
specification functions, it is convenient to do it in a separate function, which is often called
mapStateUp().

When a system with hidden state is tested (i.e. when the testing system has no access to internal
data of the implementation), the call-block should operate in the assumption that the implemen-
tation completes without errors in compliance with the specification, and then bring the model
state to one that is expected in the result of interaction:

mediator push_media for
 specification bool push_spec(Integer* i) reads i updates stack_model
{
 ...
 state {
 add_List(stack_model, 0, create_Integer(push_spec));
 }
}

State-block of specification functions is executed by the testing system immediately after the
call-block and prior to checking of postcondition in the specification function.

State-block of deferred reactions is executed after appearing of a deferred reaction prior to
checking of postcondition.

33

SeC language

Catcher
Catcher is intended to receive the result of deferred reactions.

Catchers are implementation-dependent components. Their purpose is to assemble all deferred
reactions of the target system and register them in the interaction registrar (refer to “CTesK 2.2:
SeC Language Reference”).

Scenarios

A usual task of testing consists in checking of the system behavior when interacting with it
through the set of interface functions until the specified level of coverage is achieved. The se-
quence of testing interactions for the purpose of solving such task is named a test.

Invocations of one or more specification functions and the method of enumerating of its parame-
ters are specified in a scenario functions. In the process of testing, the testing system is in one of
states that are called scenario states. Every invocation of a scenario functions transits the testing
system from one state to another. All parameters are automatically enumerated in each achieved
scenario state.

Test scenario consists of several scenario functions indicating a mechanism of building a test,
the function of scenario state evaluation, the function defining the ways to initialization and fi-
nalization of test system and system under test.

A proper test is automatically generated on the basis of the data contained in a testing scenario.

Scenario function
Scenario functions describe sets of testing interactions. For this purpose, scenario function de-
fines interactions (invocations of specification functions) and the way to enumerate their parame-
ters. All interactions are automatically executed in every scenario state achieved in the process of
testing.

Scenario functions are able to execute extra check for correctness of behavior of the functions
invoked.

A scenario function is defined as a function without parameters, which returns a value of the type
bool and is marked with scenario keyword:

scenario bool f_scen();

In the plainest case, every scenario function corresponds to exactly one specification function. If
a specification function has no arguments, then the scenario function body should contain a sin-
gle invocation of a specification function. The scenario function must return false, if the system
behavior is incorrect, and true in a normal situation. It must be noted, that a check of postcondi-
tions of invoked specification functions goes automatically and its results shall not be taken in
account, i.e. check operation in a scenario function is of an extra nature.

34

CTesK 2.2 User’s Guide

specification int f_spec(void);
scenario bool f_scen() {
 f_spec();
 return true;
}

Iteration statement
In the case when a specification function has arguments, a necessity emerges to enumerate them.
To do so, iteration statements are used.

An iteration statement is used in a scenario function only and is intended for parameterized enu-
merating of testing interactions. From the syntax perspective, an iteration statement is similar to
the for cycle:

iterate(decl; continuation_cond; increment; filtration_cond) body;

A declaration is a mandatory expression and represents a declaration of an iteration variable and
its initialization (unlike C, where a variable is declared beyond a cycle). The iteration variable
must be of an allowable type (refer to “SeC allowable types” section). The iteration variable is
not a regular local variable: as far as iteration is executed independently in all scenario states,
there exists a copy of iteration variable for each state, with its own value. When scenario func-
tion is invoked in a certain state, the value, which the iteration variable has received in the previ-
ous invocation within the same state, will be used as a value of such variable.

Continuation condition and increment perform in the same way as similar expressions of the for
cycle do.

Filtration condition represents a logical expression. If it is false, then a transition to the next
value of the iteration variable occurs. Filtration condition may be omitted, and in this case it is
equivalent to the expression true, i.e. none of the iteration variable values will be rejected.

Therefore, the following construction:
iterate(int i=0; i<10; i++; i&1==0) { ... }

to a certain sense is similar to the for cycle:
int i;
for(i=0; i<10; i++) {
 if (!(i&1==0)) continue;
 ...
}

This model may be used in order to represent a sequence of invocations that will be generated
within a single scenario state. However, a distinction should be recognized between an iteration
statement and a cycle. First, a value of the iteration variable depends on a scenario state, while
the cycle variable does not. Second, at a single scenario function invoking, only a single iteration
is executed; it defines transition from one scenario state to another. In the case that a usual cycle
is used within a scenario function, all the invocations enumerated by the cycle will be executed
within the same transition.

Nested iteration statements are acceptable. However, successive iteration statements may not be
used.

In the process of testing without deferred reactions, a scenario state alters together with the proc-
ess of testing interaction that occurs at the moment of invoking of a specification function.
Therefore, if in the result of the specification function performance global variables change, then
already updated values will be accessible within a scenario function after it has been invoked.
But the state variables as well as iteration variables will preserve their values that correspond to
the previous scenario state, until the scenario function finishes.

35

SeC language

In the process of testing with deferred reactions, a scenario state does not alter within the sce-
nario function performance. Such alteration occurs in the end of performance of the scenario
function, as soon as all deferred reactions have been caught.

Iteration by coverage criterion
Iteration by coverage criterion represents an important special case of iteration. The purpose of
such iteration is in executing an interaction exactly once for every branch of functionality de-
fined in the coverage criterion. Such iteration reduces the interactions number, without losing of
the quality of coverage, and represents a way to fighting nondeterminism that emerges in the
process of generalization of model state of the specification within a scenario.

Iteration by coverage criterion is executed with the help of coverage construction, which calcu-
lates the achieved functionality branch in the coverage criterion by default. Thus, during itera-
tion by coverage elements (functionality branches) of coverage appointed in run-time with the
help of the function set_coverage_specification_function_name, or, otherwise, explicitly
(by the keyword default) or implicitly (the last coverage defined in the specification function)
declared as the default coverage criterion (refer to “Coverage criterion” section), are iterated.

Suppose, there is a certain iteration of parameters:
scenario bool f_scen() {
 iterate(int i=0; i<10; i++; i&1==0) {
 iterate(double j=0.0; j<1.0; j+=0.01; j<0.4 || j>0.6) {
 f_spec(i,j);
 }
 }
 return true;
}

In order to transform it in such a way so that no more than a single invocation of a specification
function is executed for every functionality branch defined in the criterion of coverage, an extra
iteration by functionality branches should be introduced with replacing of the existing iteration
statements with usual cycles:

scenario bool f_scen() {
 int i;
 double j;
 iterate(int cov = 0; cov < get_coverage_size_f_spec(); cov++;) {
 for(i = 0; i < 10; i++) {
 if (!(i & 1 == 0)) continue;
 for(j = 0.0; j < 1.0; j+ = 0.01) {
 if (!(j < 0.4 || j > 0.6)) continue;
 if (cov == coverage f_spec(i,j)) {
 f_spec(i,j);
 goto done;
 }
 }
 }
 done:;
 }
 return true;
}

The function get_coverage_size_specification_function_name() returns the amount of
the functionality branches in the coverage criterion by default. The construction coverage re-
turns the number of a branch that is achieved under the specified parameters, while check of the
number for equality to the iteration variable cov provides invoking of a specification function
that corresponds to the successive functionality branch.

In more complicated cases, a necessity appears to execute several testing interactions within a
single scenario function. Such situation may come normal in the process of testing of the systems

36

CTesK 2.2 User’s Guide

with deferred reactions, when several specification functions are invoked in a scenario function.
In this case, all necessary invocations shall just be written in the iteration block.

Scenario state variables
Along with iteration variables, there is another type of variables the value of which depends
upon the scenario state—scenario state variables. For every scenario state, there is a copy of
such a variable proper to it, with its individual value. If a scenario function is invoked in a cer-
tain scenario state, the value which has been received by the variable during the previous invoca-
tion in the same state will be used as the variable value.

Declaration of the scenario state variables starts with the modifier stable and must contain ini-
tialization. The scenario state variables should be of the allowable type (refer to “ SeC allowable
types” section).

stable int i = 0;

The location where such variables are declared in the scenario function, will affect only their
visibility scope, not the functionality.

Function of evaluating scenario state
Within the process of performing, the testing system is in one of the states. The function of
evaluating a scenario state shall normally compute such state on the basis of the values of vari-
ables which define the model state. A scenario state shall often represent a generalization of the
model state, however, it also may coincide with the model state and on the other hand it may be
totally not associated with it.

The function has no parameters and returns a reference to the value of a specification type:
typedef Object* (*PtrGetState)(void);

An example of function that generalizes the model state, representing a list, as its length:
List* l;

Object* getState(void) {
 return create_Integer(size_List(l));
}

Function of determining state stationarity
The function of determining state stationarity is only used in testing of the systems with deferred
reactions.

The function has no parameters and returns a logical value that indicates whether the current
specification model state is stationary or not. The specification model state is a stationary state if
no deferred reactions are expected in this state).

typedef bool (*PtrIsStationaryState)(void);

Example:
List* expectedReactions;
...
bool isStationaryState() {
 return empty_List(expectedReactions);
}

37

SeC language

Function of saving model state
The function of saving model state is only used in testing of the systems with deferred reactions.

The function has no parameters and returns a reference to the value of a specification type that
contains the current specification model state.

typedef Object* (*PtrSaveModelState)(void);

In the case when the specification model state is represented as a variable of non-specification
type or as several variables, it is necessary to define a new specification type that includes all re-
quired data.

List* modelList;
int modelInt;
specification typedef struct { List* a; int b; } ModelState = {};
...
Object* saveModelState() {
 return create(&type_ModelState, clone(modelList), modelInt);
}

Function of restoring model state
The function of restoring model state is only used in testing of the systems with deferred reac-
tions.

The function has as its input a reference to the value of a specification type, which is the same as
a type returned by the function of saving model state:

typedef void (*PtrRestoreModelState)(Object*);

The value returned by the function of saving model state is input to the function of restoring
model state. The purpose of the function is to restore the current specification model state of the
system in compliance with this value.

List* modelList;
int modelInt;
specification typedef struct { List* a; int b; } ModelState = {};
...
void restoreModelState(Object* modelState) {
 ModelState* s = (ModelState*)modelState;
 modelList = clone(s->a);
 modelInt = s->b;
}

Function of initialization
The function of initialization is intended to perform preliminary work prior to testing. The func-
tion assumes two parameters similar to those of the function main, and returns a logical value
that demonstrates whether initialization has been successful:

typedef bool (*PtrInit)(int, char**);

As a rule, the function provides:

• initializing of the global variables of a model

• initializing of the system under test implementation

• setting up mediators with the help of the functions
set_mediator_specification_function_name()

38

CTesK 2.2 User’s Guide

• if necessary, setting up coverage criterion by default for specification functions with help of
the functions set_coverage_specification_function_name()

Whenever necessary, the function of initializing can use the initialization parameters passed to it.
char *impl_data;
String* model_data;

specification void f_spec(int a);
mediator f_media for specification void f_spec(int a);

bool init(int argc, char **argv) {
 impl_data = (char*)malloc(SIZE);
 model_data = create_String("");
 set_mediator_f_spec(f_media);
 return (impl_date != NULL && model_data != NULL);
}

In the case of testing of the systems with deferred reactions, the function is additionally used to:

• define the time of expecting of deferred reactions

• if necessary, allocate channels for processing of the immediate and deferred reactions
ChannelID chid;

bool init(int argc, char **argv) {
 chid = getChannelID();
 setStimulusChannel(chid);
 setWTime(1);
 ...
}

Function of finalization
The function of finalization is intended to execute concluding operations after executing of test.
The function has no parameters and no return value:

typedef void (*PtrFinish)(void);

Normally, the function of finalization deallocates resources, allocated in the function of initiali-
zation.

char *impl_data;
String* model_data;

void finish(void) {
 free(impl_data);
 model_data = NULL;
 releaseChannelID(chid);
}

Scenario variable
Test scenario provides all information necessary to automatically generate a test. It corresponds
to a variable (scenario variable) of a special structural type with the name dfsm or ndfsm,
marked with the modifier scenario:

scenario dfsm testScenario;

39

SeC language

The name of the test engine which defines the technique of test generation is used as the name of
the type:

• dfsm — Deterministic Finite State Machine;

• ndfsm — Nondeterministic Finite State Machine.

During test run dfsm applies the test actions that can change scenario state. Dfsm automatically
keeps track of all state changes and constructs a finite state machine in accordance to test proc-
ess. All reaches scenario states become the states of the machine, and transitions of the machine
are marked by appropriate test actions. dfsm testing mechanism finishes the testing when it per-
formed all test actions, defined by the user, in all states of the machine reachable from the start-
ing state.

For this condition to be possible, the following constraints must be satisfied:

• Finiteness
Number of states, reachable from the starting state by performing test actions from the
defined set, must be finite.

• Determinancy
Performing the same test action in any state of the system must lead the system to the
same state.

• Strong connectivity
Any scenario state is reachable from any other scenario state by performing test actions.

The ndfsm test engine works correctly with a wider class of finite state machines, in particular,
with finite state machines having deterministic strongly connected complete spanning subma-
chine:

• Spanning submachine
A spanning submachine contains all reachable scenario states.

• Complete submachine

For each scenario state and an allowable test action a complete submachine either con-
tains all transitions from this state marked by this test action or does not contain such
transions at all.

The ndfsm test enfine does not intended for testing systems with deffered reactions.

Definition of a scenario variable should contain the initializer of the following form:
scenario dfsm testScenario = {
 .init = init,
 .getState = getState,
 .actions = {
 f_scen,
 g_scen,
 NULL
 },
 .finish = finish
};

In the init field, the name of the function of initialization is specified. The field may be omitted,
but normally, a function of initialization is used at least for the purpose of setting up mediators.

In the getState field, the name of the function of evaluating scenario state is specified. If the
field is omitted, testing is executed in a single state.

40

CTesK 2.2 User’s Guide

In the actions field, the list of the scenario functions, which are included in a given test, is
specified. The list finishes with the value NULL. This field is obligatory.

In the finish field, the name of the function of finalization is specified. The field may be omit-
ted.

A test scenario is invoked as a function with an identifier of the scenario variable with two pa-
rameters, which are the same as ones of the function main(), and without a return value. Usu-
ally, invocation is executed in the function main():

int main(int argc, char **argv) {
 testScenario(argc,argv);
 return 0;
}

As a test scenario is invoked, the parameters that have been passed to it are parsed. The test sys-
tem processes the following standard parameters:

• -tc — send tracing to the console

• -tt — send tracing to the file with a unique name, composed of the scenario name and cur-
rent time

• -t file_name — send tracing to the file with specified name

• -nt — disables tracing

Starting a test without any of the command line parameters described above has the same effect
as starting with the –tt parameter.

• --trace-accidental — enables tracing of the accidental transitions

• -uerr — execute testing until the first error appears (by default)

• -uerr=number — execute testing until number errors apper (for ndfsm only)

• -uend — execute testing until complete, despite errors

• --find-first-series-only, -ffso — find only first success series

Standard parameters processed are deleted from the parameters list, and the updated list is passed
to the function of initialization of scenario.

Several invocations of scenarios from the same program are acceptable. Note that, if the parame-
ters passed to the executable test file from the command line, are simply sent to all invoked sce-
narios, then as soon as tracing is sent to the file, the trace of a successive scenario will overwrite
the trace of the previous scenario. In order to provide that traces of all scenarios get in the same
file, it is necessary to use functions addTraceToFile() and removeTraceToFile()1:

int main(int argc, char **argv) {
 addTraceToFile("trace.xml");
 testScenario1(argc,argv);
 testScenario2(argc,argv);
 removeTraceToFile("trace.xml");
 return 0;
}

In the case of testing of the systems with deferred reactions, greater number of fields should be
specified in the definition of the test scenario:

1 For more details about these functions refer to the section “Tracing services” of the chapter “CTesK test system
support library” of the document “CTesK 2.2. SeC Language Reference”.

41

SeC language

scenario dfsm testScenario = {
 .init = init,
 .getState = getState,
 .isStationaryState = isStationaryState,
 .saveModelState = saveModelState,
 .restoreModelState = restoreModelState,
 .actions = {
 f_scen,
 g_scen,
 NULL
 },
 .finish = finish
};

Fields init, getState, actions and finish have the same meaning as usually. There are three
extra fields that are obligatory.

In the isStationaryState field, the name of the function of determining state stationarity is
specified.

In the saveModelState field, the name of the function of saving specification model state is
specified.

In the restoreModelState field, the name of the function of restoring specification model is
specified.

42

CTesK 2.2 User’s Guide

Tests translation and
building

Before running a test the SEC files with its source code should be translated into the C files. The
files obtained can be compiled by an arbitrary C compiler, for example, Micro-
soft Visual C++® 6.0 or gcc. To make an executable test it is necessary to link object files ob-
tained with CTesK libraries.

This chapter describes how to translate SEC files into C files, as well as macrodefenitions
available from SEC files and CTesK libraries.

SEC files translation

The sec command is used to translate SEC files into C files.

On UNIX platforms the command has the following format:
sec.sh sec_file_name c_file_name preprocessed_file_name
[preprocessor_options]

On Windows platforms the command has the following format:
sec.bat sec_file_name c_file_name preprocessed_file_name
[preprocessor_options]

To translate the account_scenario.sec file into C code on Unix platforms launch command shell,
go to the examples/account folder in the CTesK tree and run the command:

sec.sh account_scenario.sec account_scenario.c account_scenario.sei

43

Tests translation and building

On Windows platforms one should run the following command in the examples\account direc-
tory of the CTesK tree:

sec.bat account_scenario.sec account_scenario.c account_scenario.sei

As a result of the translation the account_scenario.c file should be generated in exam-
ples/account.

Standard macrodefinitions

The following macrodefinitions can be used in test source code to control a translation:

• SEC file indicator — SEC

Defines a file type in which code is located: SEC file, if SEC is defined, or C file, other-
wise.

• CTesK version — CTESK_VERSION

Defines the version of the CTesK translator used.

• CTesK build identifier — CTESK_BUILD

Defines the build identifier of the CTesK translator used.

CTesK libraries

CTesK is delivered with the following set of libraries, located in the lib/cygwin and lib/win32
subdirectories of the CTesK home directory:

• atl — abstract types library:

o libatl.a —for gcc;

o atl.lib — for Microsoft Visual C++® 6.0 (Single-Threaded mode);

o atlmt.lib — for Microsoft Visual C++® 6.0 (Multithreaded mode);

o atlmtdll.lib — for Microsoft Visual C++® 6.0 (Multithreaded DLL mode);

o atl7.lib — for Microsoft Visual C++® 7.0 (Single-Threaded mode);

o atlmt7.lib — for Microsoft Visual C++® 7.0 (Multithreaded mode);

o atlmtdll7.lib — for Microsoft Visual C++® 7.0 (Multithreaded DLL mode).

• tracer — events tracing functions library:

o libtracer.a — for gcc;

o tracer.lib — for Microsoft Visual C++® 6.0 (Single-Threaded mode);

o tracermt.lib — for Microsoft Visual C++® 6.0 (Multithreaded mode);

o tracermtdll.lib — for Microsoft Visual C++® 6.0 (Multithreaded DLL mode);

44

CTesK 2.2 User’s Guide

o tracer7.lib — for Microsoft Visual C++® 7.0 (Single-Threaded mode);

o tracermt7.lib — for Microsoft Visual C++® 7.0 (Multithreaded mode);

o tracermtdll7.lib — for Microsoft Visual C++® 7.0 (Multithreaded DLL mode).

• ts — SEC run-time library:

o libts.a — for gcc;

o ts.lib — for Microsoft Visual C++® 6.0 (Single-Threaded mode);

o tsmt.lib — for Microsoft Visual C++® 6.0 (Multithreaded mode);

o tsmtdll.lib — for Microsoft Visual C++® 6.0 (Multithreaded DLL mode);

o ts7.lib — for Microsoft Visual C++® 7.0 (Single-Threaded mode);

o tsmt7.lib — for Microsoft Visual C++® 7.0 (Multithreaded mode);

o tsmtdll7.lib — for Microsoft Visual C++® 7.0 (Multithreaded DLL mode).

• utils — test system support library:

o libutils.a — for gcc;

o utils.lib — for Microsoft Visual C++® 6.0 (Single-Threaded mode);

o utilsmt.lib — for Microsoft Visual C++® 6.0 (Multithreaded mode);

o utilsmtdll.lib — for Microsoft Visual C++® 6.0 (Multithreaded DLL mode);

o utils7.lib — for Microsoft Visual C++® 7.0 (Single-Threaded mode);

o utilsmt7.lib — for Microsoft Visual C++® 7.0 (Multithreaded mode);

o utilsmtdll7.lib — for Microsoft Visual C++® 7.0 (Multithreaded DLL mode).

45

Analysis of test results and test debugging

Analysis of test
results and test
debugging

During the testing process a trace is generated automatically, which collects all the detailed in-
formation about events happened during the test. In order to analyze results of the test, test re-
ports are built for the test trace. Static reports contain information about the errors detected, cov-
erage achieved, states reached and transitions between them. Graphic reports provide a detailed
study of the testing process in its dynamics. Analysis of results shows to what degree the testing
was complete, whether there were errors in implementation and whether further test revision is
required.

In this chapter the account example is used, which is available in the examples/account folder of
the CTesK.

Test trace

The test trace is generated in the process of the test performance and represents a file in the XML
format. To analyze test results, it is much more convenient to use test reports than a trace itself.

Messages
Below are the main message types, which can appear in the trace:

46

CTesK 2.2 User’s Guide

1. Beginning and end of trace

2. Beginning and end of scenario

3. Scenario state reached

4. Beginning and end of transition between states

5. Scenario object value (state, scenario function name, iteration variable value etc.)

6. Beginning and end of specification function invocation

7. Model object value (function argument value etc.)

8. Beginning and end of serialization

9. Beginning and end of oracle work

10. Coverage structure

a. Logical formulas (invariants and read-only access checks)

b. Coverage criteria together with functionality branches

11. Value of logical formula

12. End of postcondition check

13. Functionality branch coverage

14. Error message

15. User message

The following table contains an example of the test trace:

<trace> Trace beginning

 <scenario_start trace="1" name="pqueue" time="1068567432000" host="CAMEL" os="Windows_NT"/> Scenario beginning

 <state trace="1" id="0"/> Scenario state

 <scenario_value trace="1" kind="state" type="" name=""><![CDATA[struct { 0, 0 }]]></scenario_value>
Scenario object
value

 <transition_start trace="1" id="0"/> Transition beginning

 <scenario_value trace="1" kind="scenario method" type="" name="">
 <![CDATA[enq_scen]]>
 </scenario_value>

Scenario object
value

 <scenario_value trace="1" kind="iteration variable" type="int" name="i">
 <![CDATA[0]]>
 </scenario_value>

Scenario object
value

 <model_operation_start trace="1" signature="void enq_spec(Item item)"/>
Specification
function
beginning

 <model_value trace="1" kind="argument" type="Item" name="item">
 <![CDATA[00303478]]>
 </model_value>

Model object value

 <oracle_start trace="1" signature="void enq_spec(Item item)"/> Oracle beginning

 <coverage_structure trace="1">
Coverage structure
beginning

 <formulae>
 <formula id="0"><![CDATA[invariant type Item (@item)]]></formula>
 <formula id="1"><![CDATA[invariant type Item (item)]]></formula>
 <formula id="2"><![CDATA[reads item]]></formula>
 </formulae>

Logical furmulas

47

Analysis of test results and test debugging

 <coverage id="c1">
 <element id="0" name="single branch "/>
 </coverage>

Coverage criteria
and functionality
branches

 </coverage_structure>
Coverage structure
end

 <user_info trace="1"><![CDATA[Oracle call]]></user_info> User message

 <prime_formula trace="1" id="0" value="true"/> Formula value

 <precondition_end trace="1"/>
Precondiition check
end

 <coverage_element trace="1" coverage="c1" id="0"/>
Functionality branch
coverage

 <prime_formula trace="1" id="1" value="false"/> Formula value

 <exception trace="1" internal="false">
 <where></where>
 <info><![CDATA[Postcondition failed]]></info>
 </exception>

Error message

 <oracle_end trace="1"/> Oracle end

 <model_operation_end trace="1"/>
Specification function
end

 <transition_end trace="1"/> Transition end

 <state trace="1" id="0"/> Scenario state

 <scenario_value trace="1" kind="state" type="" name=""><![CDATA[struct { 0, 0 }]]></scenario_value>
Scenario object
value

 <scenario_end trace="1"/> Scenario end

</trace> Trace end

Tracing control
When running a test, one can use the following command line parameters, which control the
tracing:

• -tc — sends the trace to console

• -tt — sends the trace to a file with a unique name, which consists of a scenario name and a
current time

• -t file_name — sends the trace to a file with a specified name

• -nt — disables tracing

Starting a test without any of the command line parameters described above has the same effect
as starting with the –tt parameter.

• --trace-accidental — enables tracing of the accidental transitions

48

CTesK 2.2 User’s Guide

In the program, tracing to a console is assigned by the addTraceToConsole() and
removeTraceToConsole() functions, and tracing to a file is assigned by the functions
addTraceToFile() and removeTraceToFile() 2:

int main(int argc, char **argv) {
 addTraceToConsole();
 addTraceToFile("trace.xml");
 testScenario(argc,argv);
 removeTraceToFile("trace.xml");
 removeTraceToConsole();
 return 0;
}

By default, accidental transitions (i.e. transitions without a call of the oracle) do not get into a
trace. One can change this using the setTraceAccidental() function3:

int main(int argc, char **argv) {
 setTraceAccidental(true); // trace all transitions
 testScenario(argc,argv);
 return 0;
}

During testing one can write arbitrary user messages into a trace using the traceUserInfo()
function4:

 Object* o;
 String* s;
 ...
 s = create_String("o = ");
 s = concat_String(s, toString(o));
 traceUserInfo(toCharArray_String(s));

One can also write formatted user data into a trace using the traceFormattedUserInfo()5
function. This function supports all the conversion specifiers supported by the standard function
printf() and the special specifier $(obj) to convert a specification object into a string. All the
$(obj) specifiers shall precede the printf() specifiers:

 int i;
 Object* o;
 ...
 traceFormattedUserInfo("o = $(obj), i = %d", o, i);

By default, character encoding of the trace is UTF-8. One can change this using the
setTraceEncoding()6:

int main(int argc, char **argv) {
 // set trace character encoding to Windows-1251
 setTraceEncoding("Windows-1251");
 testScenario(argc,argv);
 return 0;
}

2 For more details about these functions refer to the section “Tracing services” of the chapter “CTesK test system
support library” of the document “CTesK 2.2. SeC Language Reference”.
3 For more details refer to the section “Tracing services” of the chapter “CTesK test system support library” of the
document “CTesK 2.2. SeC Language Reference”.
4 Refer to the same place.
5 Refer to the same place.
6 Refer to the same place..

49

Analysis of test results and test debugging

Static reports

A static report is generated for one or several traces and contains information about results of the
testing, about the coverage of the functionality branches of specification functions and about
states reached and transitions between them. The test trace contains all information about the test
progress, and a static report represents this information in a representative and compact form.

A report is a set of HTML files linked together by references. Logically it consists of three sec-
tions:

• Completed test scenarios

• Specification functions coverage

• Errors detected

Each section contains general information and subsections with detailed information about spe-
cific errors, scenarios, or functions.

Scenarios
A general page of the scenario report contains information about the number of states, transi-
tions, and errors for each scenario.

Detailed information about scenario includes:

• Number of states, transitions, and errors

• List of errors (if any)

• List of transitions between states with information about number of falls into each transition

50

CTesK 2.2 User’s Guide

Figure 1. Test scenario report page.

Specification functions
The general page of the report about specification function coverage contains a table, which
represents the following information for each coverage of each tested specification function:

• Specification function name

• Name of the coverage

• Functionality branches coverage percentage (number of branches covered and total number
of branches is specified in the brackets)

• Number of calls of this specification function and number of errors detected during these
calls

Detailed information about a specification function includes:

• Full signature of the specification function

• Table, which specifies the number of falls into a branch and the number of errors detected in
it for each functionality branch of each coverage. If there are no falls, the corresponding line
is highlighted in red, and in green otherwise

• List of errors related to this function (if any)

51

Analysis of test results and test debugging

Figure 2. Specification function coverage report page.

Errors
The general page of the report about errors contains a list of all errors detected (if the error is de-
tected in the specification function oracle, the name of this function is specified).

Detailed information about an error includes at least:

• Trace filename and the line number in it

• Scenario name

Depending on the context in which the error was detected, there may be other elaborating infor-
mation as well:

• State

• Transition (name of the scenario function and values of iteration variables)

• Specification function name and its parameters

• Information about falling into a functionality branch

• Values of logic formulas

52

CTesK 2.2 User’s Guide

Figure 3. Failure report page.

Analysis of results

After the test trace has been obtained, it is necessary to perform analysis of test results in order to
find out, how successfully and completely the specification requirement conformance has been
checked, and whether test revision is required.

Two tasks are performed during analysis:

1. Error search

2. Determination of coverage completeness

Error search
Assume that some error was detected during the test. We need to determine the reason for this
error and localize it.

The following error types may be detected during testing:

• Postcondition violation

• Violation of an invariant or access constraint

• State graph non-determination

53

Analysis of test results and test debugging

• Violation of the strong connectivity of the graph of states

• Error during initialization

• Internal and user errors

Each type is described below in detail.

Postcondition violation
The violation of a postcondition indicates inconsistency between a specification and an imple-
mentation of the system under test.

Assume we got a report during testing, which is shown in the illustration. Let us analyze it.

Figure 4. Postcondition failure detail report.

We can see that there is a postcondition violation (“Postcondition failed”), which happened in
the following situation:

• The account_scenario scenario

• The deposit_scen scenario function is called in the state 0 with the parameter i = 1

54

CTesK 2.2 User’s Guide

• The oracle of the deposit_spec specification function is called with the parameter sum = 1,
the prevalue of the parameter acct is a reference to the structure with a zero field, the post-
value of the parameter acct is a reference to the structure with a field equal to -1

• The error was detected in the “Empty account” branch of the “C” coverage criterion

• The sum parameter invariant and the invariants of the prevalue and postvalue of the parame-
ter acct are met

Let us consider the deposit_spec() specification function code:
specification void deposit_spec (AccountModel *acct, int sum)
 reads sum
 updates balance = acct->balance
{
 pre { return (acct != NULL) && (sum > 0) && (balance <= INT_MAX - sum);
}
 coverage C {
 if (balance + sum == INT_MAX)
 return {maximum, "Maximal deposition"};
 else if (balance > 0)
 return { positive, "Positive balance" };
 else if (balance < 0)
 if (balance == -MaximalCredit)
 return {minimum, "Minimal balance"};
 else
 return { negative, "Negative balance" };
 else
 return { zero, "Empty account" };
 }
 post {
 return balance == @balance + sum;
 }
}

On the basis of it we can see that the balance == @balance + sum condition has been violated.
Indeed, the expression -1 == 0 + 1 is incorrect. One should look for the error in the implemen-
tation function deposit():

void deposit (Account *acct, int sum) {
 acct->balance -= sum;
}

Indeed, the implementation function withdraws this sum from the account instead of depositing
it into.

Violation of the invariant or access constraint
Violation of the invariant or access constraint in the report looks as follows:

55

Analysis of test results and test debugging

Figure 5. Invariant failure in postcondition failure detail report.

Let us analyze the report. We can see that the postcondition has been violated in the following
situation:

• The account_scenario scenario

• The scenario function withdraw_scen is called in the state -3 with the i = 1 parameter

• The oracle of the specification function withdraw_spec, the parameter sum = 1, the prevalue
of the parameter acct is a reference to the structure with a field equal to -3, the postvalue of
the parameter acct is a reference to the structure with a field equal to –4, and the returned
value equal to 1

• The error has been detected in the “Negative balance. Too large withdrawal” branch of the
coverage “C”.

• The type invariant for the prevalue of the parameter acct has been met

• The type invariant for the postvalue of the parameter acct has been violated

The following invariant for the AccountModel invariant type has been defined:

56

CTesK 2.2 User’s Guide

invariant (AccountModel acct) {
 return acct.balance >= -MaximalCredit;
}

Hence, the acct.balance >= -MaximalCredit condition has been violated. We can conclude
that during the withdraw function there has been an attempt to withdraw such a sum from the
account, that the credit exceeded the maximum value, but the implementation under test allowed
the withdrawal nevertheless. Let us turn to the withdraw function implementation:

int withdraw (Account *acct, int sum) {
 //if (acct->balance - sum < -MAXIMUM_CREDIT)
 // return 0;
 acct->balance -= sum;
 return sum;
}

Indeed, the code, which prohibits withdrawal of an amount exceeding the credit, is commented.

State graph non-determination
Non-deterministic emerges when in the same generalized state the same scenario function, called
with the same iteration variables’ values, transits the system into different generalized states in
different cases.

Non-deterministic failure looks in the report as follows:

Figure 6. “Non-deterministic behavior” failure report

In order to understand which particular function has transited the system into different states, one
should refer to the report about scenario, which contains a table with all the transitions:

57

Analysis of test results and test debugging

Figure 7. Scenario detail report with “non-deterministic behavior” failure.

As we can see, the scenario function deposit_scen has been called from the state 1 with i = 1
parameter 27 times altogether, and 26 calls sent the system to the state 2 and one call has sent it
to the state 0.

The reason for such behavior can be both real non-determination of the behavior of the function
and problems with the state generalization. In our case the reason is exactly these problems,
which is determined after consideration of the code of the function, evaluating the model state:

static Integer* account_state() {
 return create_Integer(abs(acct.balance));
}

Here the absolute value of the balance was chosen as a generalized state. In such situation, the
generalized scenario state 1 corresponds to the specification model states the 1 and -1, but the
behavior of the function in those specification states will be different, leading to a failure.

Another situation of non-determinism is related to an incorrect generalization of state. It is possi-
ble, when in some generalized state some functionality branch is achieved one time, and not
achieved next time. The “Can’t find suitable parameters” failure will be returned in this case.

It means that some functionality branch has been achieved earlier in this generalized state. How-
ever none of the parameter values, enumerated by iteration operators at this moment, lead to the
achievement of this branch.

Violation of strong connectivity of the graph of states
Strong connectivity violation takes place when for some transition from one generalized state to
another it is impossible to return to the initial state via any sequence of transitions.

58

CTesK 2.2 User’s Guide

The report in this case looks as follows:

Figure 8. “No back arc” failure report.

There is a situation when some transition has been completed and it is not possible to go back.

59

Analysis of test results and test debugging

Figure 9. Scenario detail report with “no back arc” failure.

As we can see, there has been a transition from the state 1 to the state 0, all the transitions from
which lead to the same state 0. This suggests incorrect factorization, since the generalized state
has been chosen in such a way, that the strong connectivity condition be violated.

Let us now consider the code of the function, which returns the model state:
static Integer* account_state() {
 return create_Integer(acct.balance == 0);
}

Indeed, two generalized states, corresponding to the zero and nonzero balance, are determined
here. However scenario functions do not provide parameters, which would allow the transition
back to the nonzero balance state.

Error during initialization
Scenario initialization function can complete with an error if, for example, it was unable to ini-
tialize the system under test or allocate sufficient memory.

In the report error during initialization looks as follows:

60

CTesK 2.2 User’s Guide

Figure 10. Scenario initialization failure report.

If there is such error, one should search for its cause in the scenario initialization function.

Internal and user errors
Internal error results from a malfunction in the testing system. The user can also cause the error
in the trace using the assertion function:

Figure 11. Report with user defined failure

The name of such error will contain the text, specified in the assertion function. The context al-
lows localizing the place where the error emerged: since the context contains neither a state nor a
transition, the error has occurred before the test engine started, i.e. in the scenario initialization
function.

Let us check the code of the initialization function:

61

Analysis of test results and test debugging

static bool account_init (int argc, char **argv) {
 assertion(argc > 1, "No parameter");
 ...
}

In this case the test has been launched without passing the necessary parameter from the com-
mand line into it, which has caused the error.

Coverage completeness analysis
Analysis of the completeness of coverage, achieved during testing, is performed using the report
of the coverage of specification functions. Let us consider the report:

Figure 12. Specification functions’ coverage report.

The table lists all specification functions, which have been tested. For each coverage criterion of
each function the table lists percentage of the coverage of the functionality branches of this cov-
erage as well as number of calls of this specification function and number of errors detected dur-
ing these calls (if any).

For example, the function deposit_spec here has one coverage criterion C. In it, 80% of the
functionality branches were covered (4 out of 5), and there have been 319 calls of this function
altogether.

For detailed information about coverage it is necessary to see the report about coverage of this
function:

62

CTesK 2.2 User’s Guide

Figure 13. Specification coverage detail report.

It is clear from this report that the “Maximal deposition” branch has never been passed (it is
highlighted in red). The other branches have been passed at least once (they are highlighted in
green).

In case when some branch was not covered, one should either change the iteration of the specifi-
cation function parameters or create an additional scenario function, or create a separate scenario
for the additional testing of this branch.

63

Using CTesK in Microsoft Visual C++® 6.0

Using CTesK in
Microsoft Visual C++®
 6.0

In this chapter using CTesK in Microsoft Visual C++® 6.0 (below IDE) is considered.

The section consists of the following parts:

o Project creation;

o Mediator development;

o Test scenario development;

o Running test;

o Report generation;

o Debugging test.

Project definition

To create CTesK project select menu item 'New...', then in the pop-up window select tab
'Project' and project type 'Win32 Console Application'.

64

CTesK 2.2 User’s Guide

In the text field 'Project name' type a project name, and in the text field 'Location' — a folder
name, in which it should be located.
To complete project creation click the button 'OK'.

Figure 14. Creation of CTesK project.

In the pop-up window select project template 'An empty project' click the button 'Finish'.

Figure 15. Project template selection.

65

Using CTesK in Microsoft Visual C++® 6.0

After CTesK project creation files with SeC code can be added to it7. Work with SeC files is like
as one with C/C++ files: they could be edited and compiled (translated into C code) by means of
standard ways.

For convenience it is recommended to add into CTesK project two folders 'SEС Files' and
'SEH Files' for containing files with extensions .sec и .seh correspondently.

To add a folder it is needed in the window 'Workspace' (the tab 'FileView') to select the root of
project file tree, to click right mouse button and to select the context menu item 'New Folder...'.

In the pop-up window introduce in the text field 'Name of the new folder' a folder name (for
example, SEC Files), and the text field 'File extensions' –– extension (sec).

Figure 16. Adding 'SEC Files' folder.

To add into a project existing SeC files it is needed to select the menu item
'Project\Add To Project ►\Files...'

In the pop-up window 'Insert Files into Project' open needed folder, select file type
'All Files (*.*)' in the drop-down list 'Files of type', select files to be added and click the button
'OK'.

Figure 17. Adding into a project existing files.

To add into a project new SeC files it is needed to select the menu item
'Project\Add To Project ►\New...' (or 'File\New...').

In the pop-up window select file type 'C/C++ Header File' or 'С++ Source File', in the text field
'File name' type file name with file extension (.sec or .seh).

7 SeC files should have extension .seс or .seh.

66

CTesK 2.2 User’s Guide

Figure 18. Adding into a project new files.

To translate a SeC file into C, open the file, if it is not open, and select the menu item
'Build\Compile file_name' or press the key combination Ctrl+F7.

Mediator development

To create a template of new mediator the wizard 'CTesK Mediator Wizard' serves.

To launch the wizard click the button 'CT
µ' located on the CTesK tool panel.

Figure 19. The button launching CTesK mediator wizard.

The first step ('SEH Files') serves to select SeC header files (with extension .seh) containing
declarations of specification functions describing the functionality to be tested.

The information on the panel is presented in two lists. The list 'All project SEH files' shows un-
selected SeC header files of a project, while the list 'Selected SEH files' shows selected ones8.

Buttons 'Add >' и 'Add All >>' serve for adding files to the list 'Selected SEH files'. The first
one adds only selected files, the second –– all files of the list 'All project SEH files'. After
clicking button all selected files move from the list 'All project SEH files' into the list
'Selected SEH files'.

8 If at the moment of launching the wizard 'CTesK Mediator Wizard' in IDE a SeC header file is open it is auto-
matically added to the list 'Selected SEH files'.

67

Using CTesK in Microsoft Visual C++® 6.0

Buttons 'Rem >' and 'Rem All >>' serve to undo selecting. Using them is like as using buttons
'Add >' and 'Add All >>'. The only difference is that selected in the list 'Selected SEH files' files
move into the list 'All project SEH files'.

The button 'Next >' serves to go to the next wizard step. If there are no files in the list
'Selected SEH files' the button is disabled.

Figure 20. The step 'SEH Files' of CTesK mediator wizard.

The second wizard step ('Mediator Functions') serves for selecting specification functions, for
that templates of mediator functions should be created, and for defining mediator function
names.

The information on the panel is presented in the form of a table. Each row of the table corre-
sponds one of specification functions declared in one of SeC header files selected on the previ-
ous step.

The table consists of two columns:

o 'Specification' shows specification function name, and allows its adding to or removing
from a set of selected functions;

o 'Mediator' shows mediator function name, and allows its editing (double click left mouse
button on the corresponding table cell to edit mediator function name).

By default all specification functions are selected, and mediator functions have names the same
as corresponding specification functions with replaced the last suffix beginning with the symbol
_ (usually _spec)9 by the suffix _media, if a specification function name has no suffix, the suffix
_media is added to the end of the specification function name.

When selecting a row of the table in the text field under the table the corresponding specification
function signature is shown.

9 It is recommended to end specification functions by the suffix _spec.

68

CTesK 2.2 User’s Guide

For going back to the first step the button '< Back' is served, for going to the next step — the
button 'Next >'. If there are no selected functions 'Next >' button is disabled.

Figure 21. The step 'Mediator Functions' of CTesK mediator wizard.

The third wizard step ('Mediator Configuration') serves for selecting a kind of an implementa-
tion and for defining names of SeC files of mediator template.

The information on the panel is presented in the form of two sections. The section
'Implementation State Configuration' serves for selecting a kind of an implementation, and the
second — for defining names of SeC files of mediator template.

Two implementation kinds are possible:

o 'Open state implementation' –– if this kind is selected the wizard generates, and inserts
its call into a state block of each generated mediator function;

o 'Hidden state implementation' –– if this kind is selected the wizard does not generate
a template for a function of state synchronization.

The text field 'Mediator file names' serves for entering name of SeC files (without extension), in
which a mediator template should be contained.

For going back to the first step the button '< Back' is served, for completing mediator template
creation — the button 'Finish'. If entered name is invalid button 'Finish' is disabled.

69

Using CTesK in Microsoft Visual C++® 6.0

Figure 22. The step 'Mediator Configuration' of CTesK mediator wizard.

The wizard generates two files with extensions .sec and .seh and the same name entered in the
last step (file_name.sec и file_name.seh). They are automatically added into the current project.
In the editor window generated SeC file with extension .sec is opened.

To complete mediator development the following should be done:

o definition of a state synchronization function map_state_up_file_name (if the imple-
mentation kind is open state implementation);

o definition of state synchronization block of each mediator function (if the implementation
kind is hidden state implementation);

o adding of calls of corresponding interface functions of the implementation into call
blocks of mediators functions.

The following is an example of the template of the state synchronization function:
static void map_state_up_my_account ()
{
 // TODO: Add state synchronization actions here
}

The following is an example of the template of the mediator function:
mediator deposit_media for
specification void deposit_spec(AccountModel *acct, int sum)
reads sum
updates acct->balance
{
 call {
 // TODO: Add implementation function call here
 }
 state {
 map_state_up_my_account_mediator ();
 }
}

70

CTesK 2.2 User’s Guide

Test scenario development

For creating test scenario template the wizard 'CTesK Scenario Wizard' is used.

To launch the wizard click the button 'CT
∆' located on the CTesK tool panel.

Figure 23. The button launching CTesK scenario wizard.

The first step ('SEH Files') serves to select SeC header files (with extension .seh) containing
declarations of specification functions describing the functionality to be tested and their mediator
functions.

The information on the panel is presented in two lists. The list 'All project SEH files' shows un-
selected SeC header files of a project, while the list 'Selected SEH files' shows selected ones10.

The buttons 'Add >' и 'Add All >>' serve for adding files to the list 'Selected SEH files'. The
first one adds only selected files, the second –– all files of the list 'All project SEH files'. After
clicking button all selected files move from the list 'All project SEH files' into the list
'Selected SEH files'.

The buttons 'Rem >' and 'Rem All >>' serve to undo selecting. Using them is like as using
buttons 'Add >' and 'Add All >>'. The only difference is that selected in the list
'Selected SEH files' files move into the list 'All project SEH files'.

The button 'Next >' serves to go to the next wizard step. If there are no files in the list
'Selected SEH files' the button is disabled.

Figure 24. The step 'SEH Files' of CTesK scenario wizard.

10 If at the moment of launching the wizard 'CTesK Mediator Wizard' in IDE a SeC header file is open it is auto-
matically added to the list 'Selected SEH files'.

71

Using CTesK in Microsoft Visual C++® 6.0

The second wizard step ('Scenario Functions') serves for selecting specification functions, for
that templates of scenario functions should be created, for defining their names, for selecting cor-
responding mediator functions, and for defining a way of argument filtration by coverage for
each specification function.

The information on the panel is presented in the form of a table. Each row of the table corre-
sponds one of specification functions declared in one of SeC header files selected on the previ-
ous step.

The table consists of two columns:

o 'Specification' shows specification function name, and allows its adding to or removing
from a set of selected functions;

o 'Scenario' shows scenario function name, and allows its editing (double click left mouse
button on the corresponding table cell to edit scenario function name);

o 'Mediator' shows mediator function name, and allows its selection in the list of corre-
sponding mediator functions;

o 'Coverage' shows a way of argument filtration by coverage and allows setting one of two
ways:

o '<None>' –– filtration is disabled;

o '<Default>' –– filtration by default coverage.

By default all specification functions are selected, filtration is disabled, and scenario functions
have names the same as corresponding specification functions with replaced the last suffix be-
ginning with the symbol _ (usually _spec)11 by the suffix _scenario, if a specification function
name has no suffix, the suffix _scenario is added to the end of the specification function name.

When selecting a row of the table in the text field under the table the corresponding specification
function signature is shown.

For going back to the first step the button '< Back' is served, for going to the next step — the
button 'Next >'. If there are no selected functions 'Next >' button is disabled.

11 It is recommended to end specification functions by the suffix _spec.

72

CTesK 2.2 User’s Guide

Figure 25. The step 'Scenario Functions' of CTesK scenario wizard.

The third wizard step ('Scenario Configuration') serves for defining a type and creation argu-
ments of generalized state of the test scenario, for defining names of SeC files to be generated.

The information on the panel is presented in the form of two sections. The section
'Scenario State Configuration' serves for defining a type and creation arguments of generalized
state of the test scenario, and the section 'Names and Files Configuration' — for defining
names of SeC files of test scenario template.

In the drop-down list 'Scenario state type' there are the following types that can represent gen-
eralized state:

o '<Singleton State>' is a pseudo-type, which is used for defining test scenario with the
only state (for testing functionality independent on the history of interactions between
system under test and its environment only test scenarios with the only state is used);

o 'Integer' defines integer generalized state;

o 'List' defines generalized state in the form of a list;

o 'Set' defines generalized state in the form of a set;

o 'IntSet' defines generalized state in the form of a set of integers;

o 'Map' defines generalized state in the form of a map;

o 'VoidAst' defines generalized state untyped pointer.

In the field of the list 'Scenario state type' any other type can be defined.

The text field 'Mediator file names' serves for entering arguments of creation of generalized (it
is able if the generalized state type differs from '<Singleton State>').

The text field 'Scenario file names' serves for entering name of SeC files (without extension), in
which test scenario template should be contained. Because this name is used as test scenario
name and as prefix of some functions it should be valid identifier.

73

Using CTesK in Microsoft Visual C++® 6.0

To generate the function main launching the test scenario it is needed to turn on the option
'Generate main function'. If the function main should be defined in a special file the option
'Into the separate files' should be turned on, and in the text field 'Main files name' a name for
files, which should contain generated code launching the test scenario, should be defined.

For going back to the first step the button '< Back' is served, for completing mediator template
creation — the button 'Finish'. If entered name is invalid button 'Finish' is disabled.

Figure 26. The step 'Scenario Configuration' of CTesK scenario wizard.

The wizard generates files with extensions .sec and .seh and the same name entered in the last
step (file_name.sec и file_name.seh). They are automatically added into the current project. In
the editor window SeC file with generated test scenario template is opened12.

To complete test scenario development the following should be done:

o definition of a set of specification data containing a full history of changes in specifica-
tion state, that can be produced by actions defined in the test scenario (it can be a set of
global variables defining specification state);

o definition of the function file_name_init initializing the test scenario;

o definition of the function file_name_finish finalizing the test scenario;

o definition of the function file_name_state building the generalized state of the test
scenario;

o adding iterations of arguments of calls of the corresponding specification functions into
the scenario functions.

The following is an example of the template of the initialization function of the test scenario
function:

12 In the case of turning on the options for generation of the function main into a special file the wizard generates
two others files with extension .sec.

74

CTesK 2.2 User’s Guide

bool my_account_scenario_init (int argc, char **argv)
{
 // TODO: Add scenario initialization actions here
 return true;
}

The following is an example of the template of the finalization function of the test scenario func-
tion:

void my_account_scenario_finish ()
{
 // TODO: Add scenario finalization actions here
}

The following is an example of the template of the function building the generalized state of the
test scenario:

Object *my_account_scenario_state ()
{
 return create (&type_Integer /* TODO: Add scenario generalized
 state creation parameters here */);
}

The following is an example of the scenario function:
/*
specification void deposit_spec(AccountModel * acct, int sum)
reads sum
updates acct->balance
*/
bool scenario deposit_scen ()
{
 // TODO: Add cycles for parameters iteration here
 return true;
}

The following is an example of the generated function main:
void my_account_main (int argc, char **argv)
{
 set_mediator_deposit_spec (deposit_media);
 set_mediator_withdraw_spec (withdraw_media);

 my_account_scenario (argc, argv);
}

int main (int argc, char **argv)
{
 my_account_main(argc, argv);
 return 0;
}

Running test

Before test running it should be made its executable file. It can be means of the menu item
'Build\Build <project name>.exe' or the key F7.

Test options are passed from the function main to the test scenario. The test engines has the fol-
lowing predefined options:

75

Using CTesK in Microsoft Visual C++® 6.0

-t <file name> — write the test trace into the file '<file name>'

-tc — write the test trace into the console

-tt — write the test trace into the file
'<scenario-name>--YY-MM-DD--HH-MM-SS.utt'

-nt — disable tracing

Starting a test without any of the command line parameters described above has the same effect
as starting with the –tt parameter.

--trace-accidental — enable tracing of the accidental transitions

--find-first-series-only,
-ffso

— find only first success series

Other options are passed to the initialization function of the test scenario without changes.

To run the test the menu item 'Build\Execute file_name.exe' should be selected or the key com-
bination Ctrl+F5 should be pressed.

To define options of the test select the menu item 'Project\Settings…' or press the key
combination Alt+F7, select the tab 'Debug', enter in the category 'General' in the text field
'Program arguments' option string (for example, '-t trace.xml'), and click the button 'OK'.

Figure 27. The definition of the test options.

During running the test the trace file is created if the corresponding test options is defined.

76

CTesK 2.2 User’s Guide

Test report generation

Before test report generation the file containing the test trace should be added into the project.

To add it select the menu item 'Project\Add To Project ►\Files...'. In the pop-up window
'Insert Files into Project' open needed folder, select the file type 'All Files (*.*)' in the
drop-down list 'Files of type', select the test trace file (for example, trace.xml) and click the
button 'OK'.

Figure 28. Adding the test trace file into the project.

To generate the test report the test trace file should be open in IDE and CTesK trace analyzer
should be launched by clicking the button 'CT

TA' located on the CTesK tool panel.

Figure 29. The button launching CTesK trace analyzer.

In the result the subfolder containing the test report files is generated in the folder containin the
test trace file. After completing test report generation test report browser is automatically
launched.

Debugging test

To debug a test you can use breakpoints in the SEC files. Breakpoins are allowed in the follow-
ing places:

• The beginning of the function definition;

Ordinary, specification, mediator and scenario functions as well as type invariants are
permitted.

• The beginning of the special block;

77

Using CTesK in Microsoft Visual C++® 6.0

The special blocks are the blocks of precondition, postcondition and coverage criterion of
the specification functions as well as call and state blocks of the mediator functions.

• Functional branch return statement in the coverage criterion block.

To set breakpoint use 'F9' button.

78

CTesK 2.2 User’s Guide

Examples
of CTesK usage

Systems that provide API

The approach considered in this section is applicable to the testing of systems provided applica-
tion program interface (API), which is a set of functions, using which the application can com-
municate with the system. A typical example of such a system is a library containing mathemati-
cal functions or functions for the work with some data structures.

As an example of CTesK tool usage, the process of testing of the system for queue handling is
considered.

Description of the target system interface
A queue is a container, which implements the FIFO (First In—First Out) semantics. There are
two major operations defined for the queue: element addition and deletion; herewith the element
added first to queue is extracted from it first. The elements are passed to the queue using the non-
typified references to them.

A queue is implemented as a unidirectional list, and the first element of the list does not contain
an element of the queue.

struct queue {
 void *item;
 struct queue *next;
};

The target system interface contains the following functions:

• struct queue *create_queue (void) — creates an empty queue

79

Examples of CTesK usage

• void delete_queue (struct queue **queue) — deletes the queue and resets the pointer
to it

• int empty (struct queue *queue) — checks whether the queue is empty

• void enq (struct queue *queue, void *item) — adds the nonzero element item to the
end of the queue

• void *deq (struct queue *queue) — returns the first element and deletes it from the
queue

Functional requirements to the system are formulated as follows:

• A queue can contain only those pointers, which are not equal to NULL.

• The create_queue() function returns a non-zero pointer to the new empty queue. This
pointer can be passed to other system functions as a parameter. The queues created earlier are
not changed.

• A queue can be deleted using the delete_queue() function. After that, the old value of the
pointer to the deleted queue cannot be used as a parameter of other system functions.

• A queue is checked for emptiness using the empty() function. A nonzero value returned by
this function corresponds to an empty queue and a zero value corresponds to a queue, which
is not empty.

• An element is added to the queue using the enq() function.

• An element kept in the queue and placed there earlier than the others may be extracted from
the queue by the deq() function. The function returns this element and deletes it from the
queue.

Specification development
A specification consists of specification functions, which describe the behavior or the system un-
der test, and of a specification model of data, which contains additional information necessary
for the behavior description.

Specification model of data
A specification model contains description of types and data, in terms of which the system under
test behavior is described.

Target system considered in this example works with the following data:

• Queue element

• The queue itself

• A set of queues created

• An integer value, which indicates the emptiness of the queue (returned by the empty func-
tion)

Queue element
A queue element is a pointer of the void* type. It follows from the requirements to the system
that the element of the queue cannot be equal to NULL. The SeC language allows describing the
data type with restrictions for the values of this type (invariant). To do this, the typedef construc-
tion is used with the invariant keyword.

80

CTesK 2.2 User’s Guide

invariant typedef void *item_t;

This definition introduces a new type item_t with an invariant, which is structurally equivalent
to the void* type. The invariant is described below by the following construction:

invariant (item_t item)
{
 return NULL != item;
}

Queue
A queue is an ordered list of elements contained in it. It would be possible to use the queue im-
plementation structure but, firstly, it will complicate the specification and, secondly, such speci-
fication will be implementation-dependent. It is much more convenient to use the type List de-
fined in the CTesK specification type library13.

The library of specification types contains a set of predefined types (including container types), a
set of standard functions for working with data of these types (copying, comparing etc.) and gen-
eral mechanism of memory management, occupied by the data. The data of specification types
are always stored in dynamic memory and are accessed via the specification reference, which is
the pointer of a specification type.

The type List can store elements of a specification type only. Using the construction
 specification typedef it is possible to create a specification type, corresponding to some
type of the C language.

specification typedef item_t Item = {};

To create a specification type object, the library function create() is used. The first parameter
of this function is a pointer to the descriptor of the type of the object to be created. The type de-
scriptor is a structure containing information the system needs for working with objects of this
type. For each specification type a variable is automatically defined, which contains the type
descriptor and has the name, obtained from the type name with the prefix type_ (type_Item in
our case). The other parameters depend on the specific type: in our case, the value of the type
item_t is passed to the function. For convenience, we can describe an auxiliary function of the
creation of object of the type Item.

Item *create_item_aux (item_t item)
{
 return create (&type_Item, item);
}

To simplify work with queue models, let us describe two functions: adding an item and its re-
moving.

void add_last_aux (List *list, item_t item);
item_t remove_first_aux (List *list);

The function add_list_aux()creates the object of the type Item on the basis of the item value,
and places it to the end of the list. The append_List() library function is used for the latter ac-
tion.

void add_last_aux (List *list, item_t item)
{
 append_List (list, create_item_aux (item));
}

13 For more details about the library specification types refer to the chapter “Library of specification data types” of
the document “CTesK 2.2. SeC Language Reference”.

81

Examples of CTesK usage

The function remove_first_aux()uses the library function get_List(), which returns the list
item according to the index specified, and function remove_List(), which deletes an item from
the list according to the index specified. In order to access the value of the type item_t via the
reference to the object of the type Item, one can just dereference this reference.

item_t remove_first_aux (List *list)
{
 Item *item = get_List (list, 0);
 remove_List (list, 0);
 return *item;
}

Set of the queues created
Since the queues, with which the system under test is working, are located in dynamic memory,
this memory is a state of the system. It is impossible to model all memory, and it does not make
sense either. To describe functionality, it is sufficient to know that some pointer is a pointer to a
queue. To model a set of existing queues one can use a map of pointers to implementation
queues in their model.

For working with maps, the library type Map is used. Since the data, located by the pointer to im-
plementation queue, are not important for description of the system, and, secondly, from a point
of SeC language view, a typed pointer refers to a single value of the corresponding type, then a
map key should be the type void*. For convenience, it is possible to describe a typedef name for
this type. The same way, it is possible to describe a corresponding constant for representation of
a zero pointer.

typedef void* queue_t;

const queue_t null_queue = NULL;

When using the type Map, both the keys of the map and its values should be objects of the speci-
fication types. Therefore one should define a specification type corresponding to the type
queue_t. For convenience one can also describe a function for the creation of the object of this
specification type.

specification typedef queue_t Queue;

Queue *create_queue_aux (queue_t queue)
{
 return create (&type_Queue, queue);
}

To simplify work with the model, let us describe the following auxiliary functions related to the
queue identifier:

• Check of correctness of some identifier, i.e. of its existence as a key in a given map;

• Obtaining the queue model representation via the queue identifier;

• Queue deletion from the map;

• Obtaining the queue size via its identifier.

The function exists_queue_aux checks whether a given queue identifier is a key in a given
map via the library function containsKey_Map.

bool exists_queue_aux (Map *model_queues, queue_t queue)
{
 return containsKey_Map (model_queues, create_queue_aux (queue));
}

82

CTesK 2.2 User’s Guide

The function get_queue_aux() returns the model queue, corresponding to the given identifier,
via the library function get_Map() returning the value in the map by the key.

List *get_queue_aux (Map *model_queues, queue_t queue)
{
 return get_Map (model_queues, create_queue_aux (queue));
}

To add a queue, the function add_queue_aux is used, which calls the library function
put_Map(), adding a {key, value} pair into the map.

void add_queue_aux (Map *model_queues, queue_t queue, List *list)
{
 put_Map (model_queues, create_queue_aux (queue), list);
}

The function remove_queue_aux() uses the library function remove_Map() to remove a key and
a corresponding value from the map.

void remove_queue_aux (Map *model_queues, queue_t queue)
{
 remove_Map (model_queues, create_queue_aux (queue));
}

To obtain the number of elements in the queue, the function size_queue_aux() uses the above
mentioned function get_queue_aux() and the library function size_List(), which returns the
length of the list.

int size_queue_aux (Map *model_queues, queue_t queue)
{
 return size_List (get_queue_aux (model_queues, queue));
}

Now we can define the global variable model_queues containing the specification model state.
The zero pointer does not point to any queue, and this restriction can be included in the variable
invariant. The variable with an invariant is defined as a usual variable with addition of the key-
word invariant. The invariant is described using a special construction.

invariant Map *model_queues;

invariant (model_queues)
{
 return !exists_queue_aux (model_queues, null_queue);
}

During testing, the model state should be created before tested functions are called. In our case it
is necessary to create an object of the type Map and assign a reference to it to the model_queues
variable. The function for the creation of the type Map object accepts two additional parameters
as an input, namely the pointers to the type descriptors of keys and values of the map.

void init_state_queue (void)
{
 model_queues = create (&type_Map, &type_Queue, &type_List);
}

The value denoting the queue emptiness
As a value, returned by the function, checking whether the queue is empty (empty()), the type
bool will be used, which can assume two values: true and false.

Specification of behavior
The behavior of the functions tested is described in the form of specification functions. The defi-
nition of the specification function consists of three parts:

83

Examples of CTesK usage

• Function signature, which is analogous to the signature of the usual function (returned value,
function name, and its arguments) and contains the specification keyword;

• Access constraints to the global variables and parameters;

• Body of the specification function.

Access constraints to global variables can be of three types: reading, writing, and updating. If the
behavior of the function depends on the variable’s value, but this value does not change as a re-
sult of completion of the function, then this function provides reading access to this variable. If
the behavior of the function does not depend on the variable’s value, but after the call of the
function this variable will contain the results of completion of this function, then this function
provides writing access. In the case of the updating access constraint, the behavior of this func-
tion depends on this variable’s value, and this value can be changed as a result of the work of the
function.

The behavior of the tested function is described in the body of the specification function as a pre-
and postcondition. A precondition describes a definitional domain of the target function. A post-
condition describes the function behavior itself in terms of dependence between the values of the
parameters and global variables before and after the call of the function. Besides, the body of the
specification function may contain coverage criterion descriptions. The coverage criterion de-
fines the input data breakdown into subareas, in which the function behavior differs significantly.
Each of these subareas is called a functionality branch.

Queue creation function
The signature of the specification function, describing the create_queue function behavior, looks
like the following:

specification void create_queue_spec (void)

The queue creation function changes the system state by adding a new queue, so the access con-
straint will apply to the change of the variable model_queues.

specification void create_queue_spec (void)
 updates model_queues

It is necessary to describe the following requirement in the postcondition of the function for-
mally:

The function create_queue() returns the nonzero pointer to the new empty queue. This pointer
can be passed to other system functions as a parameter. The queues created earlier stay un-
changed.

In the postcondition, there should be a check if the function has returned the queue identifier not
equal to null_queue (1), corresponding to an empty queue (2), and not corresponding to any
existing queue directly before the call of the function (3).

In the postcondition, to access a value returned by the function, the name of the function is used,
create_queue_spec in this case. To check the third statement, it is necessary to have an access
to the value of model_queues map before the function was called, i.e. to its prevalue. However,
the global variables and variable arguments in the postcondition have postvalues, i.e. the values
obtained after the call of the function. To access a prevalue of some variable or expression, the @
operator is used. In our case, we need to get the map prevalue:

if (null_queue == create_queue_spec
 || !exists_queue_aux (model_queues, create_queue_spec)
 || 0 != size_queue_aux (model_queues, create_queue_spec)
 || exists_queue_aux (@model_queues, create_queue_spec)
)
 return false;

84

CTesK 2.2 User’s Guide

Now we need to check if the other queues did not change. To do this, we can create a copy of the
current model_queues map (the variable itself must not be changed since the specification func-
tion should not have a side effect), delete a newly created queue from it and compare to the state
of the system before the function was called. Comparison of two objects of a specification type is
performed using the library function equals().

Map *tmp_map = clone (model_queues);
...
remove_queue_aux (tmp_map, create_queue_spec);
return equals (tmp_map, @model_queues);

The postcondition is described in the body of the specification function in a block marked by the
post keyword.

specification queue_t create_queue_spec (void)
 updates model_queues
{
 post {
 Map *tmp_map = clone(model_queues);

 if (null_queue == create_queue_spec
 || !exists_queue_aux(model_queues, create_queue_spec)
 || 0 != size_queue_aux(model_queues, create_queue_spec)
 || exists_queue_aux(@model_queues
 , create_queue_spec)
)
)
 return false;

 remove_queue_aux (tmp_map, create_queue_spec);
 return equals (tmp_map, @model_queues);
 }
}

Queue deletion function
The signature and access constraints of the function look as follows:

specification void delete_queue_spec (queue_t *pqueue)
 updates model_queues

The requirements to the queue deletion function are provided below:

The function delete_queue() accepts a pointer to the queue as an input. If the pointer’s value
is equal to NULL, the function does nothing. Otherwise this value should point to an existing
queue. The corresponding queue is destroyed. The NULL value is written by the pointer parame-
ter. After that, the old value of the pointer to a deleted queue cannot be used as a parameter of
other system functions.

It follows from the requirements that the function parameter should point either to the NULL value
or to the pointer to an existing queue. Such conditions are formulated in a precondition of speci-
fication functions. The precondition is described in the body of the specification function in a
block marked by the pre keyword.

pre {
 return null_queue == *pqueue
 || exists_queue_aux (model_queues, *pqueue);
}

Depending on the value of the pointer pqueue, two functionality branches are singled out explic-
itly in requirements to the function. These branches should be described in a coverage criterion.
The coverage criterion is described in a block marked by the coverage keyword and its name:

85

Examples of CTesK usage

coverage C { ... }

For each functionality branch, there should be the return operator in this block with two values,
surrounded by curly braces. The first value is the identifier of a functionality branch and the sec-
ond value is a string with a description of the branch.

coverage C {
 if (null_queue == *pqueue) return {null, "null queue"};
 else return {not_null, "non-null queue"};
}

Different checks should be formulated for these two branches in the postcondition. So that not to
repeat calculations performed during definition of the coverage criterion, the construction
coverage() is used, to which the coverage identifier is passed. The returned value is the identi-
fier of the functionality branch, which was achieved in this coverage.

if (coverage (C) == null) {
 ...
} else {
 ...
}

In the case of a zero pointer one should check that the model_queues map value and the value of
the pointer pqueue do not change.

return @*pqueue == *pqueue
 && equals (@model_queues, model_queues);

Otherwise, the pointer value should be equal to null_queue. In order to check if the queue were
deleted, one can create a copy of the map before the function has been called, delete the corre-
sponding key and value from it and compare to the current value.

Map *tmp_map = @clone (model_queues);

remove_queue_aux (tmp_map, @*pqueue);
return null_queue == *pqueue
 && equals (tmp_map, model_queues);

Finally we have the following specification function:
specification void delete_queue_spec (queue_t *pqueue)
 updates model_queues
{
 pre {
 return null_queue == *pqueue
 || exists_queue_aux (model_queues, *pqueue);
 }
 coverage C {
 if (null_queue == *pqueue) return {null, "null queue"};
 else return {not_null, "non-null queue"};
 }
 post {
 if (coverage (C) == null) {
 return @*pqueue == *pqueue
 && equals (@model_queues, model_queues);
 } else {
 Map *tmp_map = @clone (model_queues);

 remove_queue_aux (tmp_map, @*pqueue);
 return null_queue == *pqueue
 && equals (tmp_map, model_queues);
 }
 }
}

86

CTesK 2.2 User’s Guide

Queue emptiness check function
A signature of the specification function, which describes behavior of the function for queue
emptiness checking, is represented below.

specification bool empty_spec (queue_t queue)

The function for queue emptiness checking should not change the queue, but its behavior de-
pends on the state. Therefore it provides reading access to the model_queues variable.

specification bool empty_spec (queue_t queue)
 reads model_queues

The function must correspond to the requirements provided below.

The function empty() accepts a pointer to the existing queue as an input and returns a nonzero
value if the queue is not empty, and zero otherwise.

The function has a precondition, which checks if the queue exists:
pre {
 return null_queue != queue
 && exists_queue_aux (model_queues, queue);
}

For this function, two functionality branches can be singled out, which correspond to an empty
and non-empty queue.

coverage C {
 if (0 == size_queue_aux (model_queues, queue)
 return {empty, "empty queue"};
 else
 return {not_empty, "non-empty queue"};
}

The following statement should be formulated in the postcondition: the value returned should be
true if the queue is empty and false otherwise.

post {
 return (coverage (C) == empty) == empty_spec;
}

Complete specification function is provided below.
specification bool empty_spec (queue_t queue)
 reads model_queues
{
 pre {
 return null_queue != queue
 && exists_queue_aux (model_queues, queue);
 }
 coverage C {
 if (0 == size_queue_aux (model_queues, queue))
 return {empty, "empty queue"};
 else
 return {not_empty, "non-empty queue"};
 }
 post {
 return empty_spec == (coverage (C) == empty);
 }
}

Element addition function
The function enq() accepts a pointer to the existing queue and a non-zero pointer to the element
placed as an input. The queue does not cease to exist. The element is added to the corresponding
queue. The other queues stay unchanged.

87

Examples of CTesK usage

This function changes the queue, therefore it provides updating access to the variable
model_queues.

specification void enq_spec (queue_t queue, item_t item)
 updates model_queue

According to the requirements, the function has a precondition: the queue must exist and the
element must not be equal to zero. Since the item parameter is of the type item_t, for which the
invariant is defined (non-equivalence to the NULL value), this restriction will be checked auto-
matically, and the function precondition is the queue existence checking:

pre {
 return null_queue != queue
 && exists_queue_aux (model_queues, queue);
}

For this function, a coverage criterion can be defined, which is analogous to the criterion of
coverage of the function empty_spec().

coverage C {
 if (0 == size_queue_aux (model_queues, queue))
 return {empty, "empty queue"};
 else
 return {not_empty, "non-empty queue"};
}

Elements in the queue model are arranged according to the order of placing them into the queue:
the elements with a lesser index were placed into the queue earlier. Therefore, a new element
should be added to the end of the queue, and the other elements should stay the same. In order to
check that the other queues do not change, one can place the obtained queue (tmp_list) into the
model_queues prevalue copy, and compare to the model_queues postvalue.

post {
 Map *tmp_map = @clone (model_queues);
 List *tmp_list = @clone (get_queue_aux (model_queues, queue));

 add_last_queue (tmp_list, item);
 add_queue_aux (tmp_map, queue, tmp_list);

 return equals (tmp_list, get_queue_aux (model_queues, queue))
 && equals (tmp_map, model_queues);
}

Below follows the complete specification function.

88

CTesK 2.2 User’s Guide

specification void enq_spec (queue_t queue, item_t item)
 updates model_queues
{
 pre {
 return null_queue != queue
 && exists_queue_aux (model_queues, queue);
 }
 coverage C {
 if (0 == size_queue_aux (model_queues, queue))
 return {empty, "empty queue"};
 else
 return {not_empty, "non-empty queue"};
 }
 post {
 Map *tmp_map = @clone (model_queues);
 List *tmp_list = @clone (get_queue_aux (model_queues, queue));

 add_last_queue (tmp_list, item);
 add_queue_aux (tmp_map, queue, tmp_list);

 return equals (tmp_list, get_queue_aux (model_queues, queue))
 && equals (tmp_map, model_queues);
 }
}

Element removing function
The function deq() accepts a pointer to the existing non-empty queue as an input. The queue
does not cease to exist. The function deletes the element from the queue, which was added to the
queue before the other elements in it were. The function returns the removed element. The other
queues stay unchanged.

Two functionality branches can be singled out in the coverage criterion: the first branch corre-
sponds to the extraction of the last element, and the second branch corresponds to all other cases.

The specification function can be written using the same procedure as in the case of the previous
function.

specification item_t deq_spec (queue_t queue)
 updates model_queues
{
 pre {
 return null_queue != queue
 && exists_queue_aux (model_queues, queue)
 && 0 < size_queue_aux (model_queues, queue);
 }
 coverage C {
 if (1 == size_queue_aux (model_queues, queue))
 return {last, "last element"};
 else
 return {not_last, "non-last element"};
 }
 post {
 Map *tmp_map = @clone (model_queues);
 List *tmp_list = @clone (get_queue_aux (model_queues, queue));
 item_t tmp_item = remove_first_aux (tmp_list);

 add_queue_aux (tmp_map, queue, tmp_list);

 return deq_spec == tmp_item
 && equals (tmp_list, get_queue_aux (model_queues, queue))
 && equals (tmp_map, model_queues);
 }
}

89

Examples of CTesK usage

CTesK has the capability to group specification functions into subsystems. This information is
used by the report generators. To group the specification functions developed into the queue
subsystem put the following string at the beginning of the specification source code file:

#pragma SEC subsystem queue "queue"

The "queue" string literal is used by the report generators to show the subsystem name. If it is
equal to the subsystem identifier, as in our case, it can be omitted. The univocal correspondence
between subsystems identifiers and names should exist.

A complete specification is shown in the “Appendix A”. The specification is located in two files:
the file queue_specification.seh, which contains declarations of types, variables, and functions,
and the file queue_specification.sec, which contains their definitions. These files are also avail-
able in the examples/queue folder of the CTesK distribution.

Development of mediator functions
Mediator functions are intended to establish correspondence between the implementation
functions and their relative specification functions. In a general case, a specification may be used
to test various implementations of systems that are of similar functionality. Specification does
not contain any assumptions regading the structure of an implementation. For example, any
designed specification matches a system that stores queue element in a form of an array not a
unidirectional list. To test such a system, it is enough just to write other mediators.

Each mediator function must invoke a relative implementation function and bring the model state
in compliance with results of such invocation. In the case of the system under consideration, a
model presentation of the queue can be built up on the basis of the given identifier of the queue
(a value of the type queue_t), which is actiulaly a pointer to the implementation queue. To do
so, one should walk along the unidirectional list of the implementation queue (ignoring the first
“false” element), with adding relative elements to an object of the List type. In order to create
an object of the specification type List, the pointer to the descriptor of the type type_List and
the pointer to the list element type (type_Item) should be passed to the create() function.

List *queue_to_list (queue_t queue)
{
 struct queue *q;
 List *model;

 if (null_queue == queue) return NULL;

 q = ((struct queue *)queue)->next;
 model = create (&type_List, &type_Item);

 while (NULL != q) {
 add_last_aux (model, q->item);
 q = q->next;
 }

 return model;
}

The function queue_to_list() should be invoked for all the identifiers of the queue which
represent the keys of model_queues map. The function key_Map() is used to enumerate the map
keys. If such function is invoked within a cycle for a certain map of the size size and with the
index values from zero to size – 1, then it is guaranteed that all map keys will be enumerated
(in a certain voluntary sequence).

90

CTesK 2.2 User’s Guide

void queue_map_state_up (void)
{
 int qi;
 Map *old_model_queues = model_queues;

 model_queues = create (&type_Map, &type_Queue, &type_List);

 for (qi = 0; qi < size_Map (old_model_queues); qi++) {
 Queue *q = key_Map (old_model_queues, qi);
 put_Map (model_queues, q, queue_to_list (*q));
 }
}

Definition of a mediator function consists of the following sections:

• the mediator keyword, the mediator name and the for keyword;

• the signature of a corresponding specification function and its access constraints;

• the body of the mediator function.

The mediator function signature for a queue creation function looks like the following:
mediator create_queue_media for
specification queue_t create_queue_spec (void)
 writes model_queue
{
 ...
}

The body of the mediator function consists of two blocks: a call-block where invocation of the
tested function is perfromed, and a state-block, which alters the model state in compliance with
the interaction.

The call-block of the function create_queue_media() should contain invocation of the function
create_queue() and returning of a specification model representation of the result.

call {
 return (queue_t)create_queue ();
}

The state-block should contain ivocation of the function queue_map_state_up(), which
transforms state for previously existing queues, and invokes of add_queue_aux(), which will
add a specification model representation of a newly-created queue to the state.

state {
 queue_map_state_up ();
 add_queue_aux (model_queues
 , create_queue_spec
 , queue_to_list (create_queue_spec)
);
}

The mediator funtion of deleting a queue looks as follows:
mediator delete_queue_media for
specification void delete_queue_spec (queue_t *queue)
 updates model_queues
{
 ...
}

The call-block: invocation of the function delete_queue().
call {
 delete_queue ((struct queue **)queue);
}

91

Examples of CTesK usage

A corresponding queue should be deleted from the map, and the function of evaluating a state
should be invoked within the state-block. As far as the value of *queue alters after the function
has been invoked, it should be saved in a local variable.

queue_t tmp_queue = *queue;
call { ... }
state {
 remove_queue_aux (model_queues, tmp_queue);
 queue_map_state_up ();
}

The call-block of the mediator function of checking a queue for emptiness contains conversion
of the return value from int to bool type.

mediator empty_media for
specification bool empty_spec (queue_t queue)
 reads model_queues
{
 call {
 return empty ((struct queue *)queue) ? true : false;
 }
 state {
 queue_map_state_up ();
 }
}

The mediators functions of adding and extracting an item return result of a call of the
corresponding implementation function in the call-blocks, and invoke the funсtion
queue_map_state_up() in the state-block.

mediator enq_media for
specification void enq_spec(queue_t queue, item_t item)
 updates model_queues
{
 call {
 enq ((struct queue *)queue, item);
 }
 state {
 queue_map_state_up ();
 }
}

mediator deq_media for
specification item_t deq_spec(queue_t queue)
 updates model_queues
{
 call {
 return deq ((struct queue *)queue);
 }
 state {
 queue_map_state_up ();
 }
}

Detailed definition of mediator functions is represented in “Appendix A”. Like as the specifica-
tion, the mediator functions are in two files: queue_media.seh, which contains declarations of
the mediator functions, and queue_media.sec, which contains their definitions as well as defini-
tions of auxiliary functions and data. These files are also available in the examples/queue folder
of the CTesK distribution.

92

CTesK 2.2 User’s Guide

Development of test scenario
In order to ensure testing completeness, behavior of the target functions must be tested in variou
states. For instance, the functions of checking for emptiness, adding and extracting of an element
should be tested in conditions of various queue lengths. For that purpose, a testing sequence must
be developed which means the sequence of invocations of target functions with various
parameter values.

CTesK automatically builds a testing sequence on the basis of a test scenario to be developed
manually.

The following functions shall be defined within a test scenario:

• the function of initializing a scenario;

• the function of finalizing a scenario;

• the function of evaluating a scenario state;

• the scenario functions that define enumeration of parameters of the tested functions and their
invoking.

A scenario used to test three implementation functions (enq(), deq(), and empty()) will be
discussed within the example.

To do so, definitions of extra data will be necessary. First, one should limit the size of the tested
queue, in order to provide that testing is not lasting “infinitely”. Secondly, the data to be placed
to the queue should be determined.

In order to limit the queue length, the integer variable queue_max_size is defined. To determine
queue elements, the variable that holds their amount (queue_items_num) and the array
queue_items are defined.

int queue_max_size = 10;

int queue_items_num = 20;
item_t *queue_items;

Thirdly, one should describe the variable to store the identifier of the single queue which is sup-
posed to be tested:

queue_t queue;

The function of initializing a scenario must allocate a memory for such data and fill it in with the
proper values. The function receives the parameters of the command line to process them and
extract all necessary information. Additionally, the tested queue must be created, and its model
presentation shall be synchronized with it. For that purpose, the specification function of creating
a queue must be invoked. Complete initialization function looks as follows:

93

Examples of CTesK usage

bool queue_scenario_init (int argc, char **argv)
{
 int i;

 if (argc > 1) queue_max_size = atoi (argv[1]);
 if (argc > 2) queue_items_num = atoi (argv[2]);

 queue_items =
 (item_t *)calloc (queue_items_num, sizeof (item_t));
 for (i = 0; i < queue_items_num; i++)
 queue_items[i] = malloc (i);

 queue = create_queue_spec ();

 return true;
}

The function of finalization of a scenario shall deallocate the resources, allocated by the sce-
nario.

void queue_scenario_finish ()
{
 int i;

 delete_queue_spec (&queue);

 for (i = 0; i < queue_items_num; i++)
 free (queue_items[i]);
 free (queue_items);
}

If a scenario state is defined as a sequence of items that are in the queue, then the amount of such
states is huge. On the other hand, it is enough to test functions under conditions of various
lengths of the queue. Therefore, the scenario state may be defined as an integer number that is
equal to a current length of the queue. In order to provide that the functions are tested in all such
states, a function of evaluating a scenario state and parameter enumeration for the tested func-
tions must be defined. Using the functions, CTesK testing system will automatically ensure test-
ing in various states.

The function of evaluation of a state shall return an object of the specification type. CTesK
specification type library offers the type Integer. To create an object of that type, the pointer to
the type descriptor type_Integer and a value to initialize the object (a current number of queue
items) must be passed to the function create().

Object *queue_scenario_state ()
{
 return create (&type_Integer
 , size_queue_aux (model_queues, queue)
);
}

Now, a scenario functions for each tested function of the system should be written. In the sim-
plest case, a scenario function performs a single testing interaction with the system under test in
every individual scenario state. A testing interaction is described as an invocation of a specifica-
tion function which describes behavior of the tested function. A scenario function has no pa-
rameters and returns value of the type bool. Within the present example, the scenario functions
always return true as the indicator of successful performance.

The scenario function empty_scen() consists only of invocation of the function empty_spec()
with the identifier of the tested queue as a parameter, and returning the true value.

94

CTesK 2.2 User’s Guide

scenario bool empty_scen ()
{
 empty_spec (queue);
 return true;
}

The function enq_spec() should receive an item, which should be placed in a queue. For this
purpose, the array queue_items has been prepared, every the item of the array should be placed
into the queue in every state. In order to invoke the function enq_spec() in every state with the
values of the parameter item for all indexes within the array queue_items, the SeC construction
iterate should be used.

iterate (int i = 0; i < queue_items_num; i++;)
 enq_spec (queue, queue_items[i]);

The statement iterate is similar, from the syntax perspective, to the cycle for of C. The first
expression of the cycle header (int i = 0) represents definition and initialization of an iteration
variable. A scenario function has an individual copy of the iteration variable for every scenario
state. The second expression (i < queue_items_num) is the condition of continuation of the cy-
cle execution. The third expression (i++) represents the calculation of the next value of the itera-
tion variable. The statement iterate has also the fourth expression (which is absent in the pre-
sent case), the condition of the filtration. If the condition is not satisfied, the body of the cycle
will not be executed for current value of an iteration variable.

During every execution of the scenario function in a certain state, the body of the statement
 iterate is executed with the next value of an iteration variable that corresponds to a state. The
body of the given cycle will be executed in every state of the scenario with the values of the
variable i equal to 0, 1, ..., queue_items_num – 1.

In order to limit the queue length, the function of adding an item should not be invoked as soon
as the maximal queue length is achieved. For the purpose, a check is performed in the scenario
function:

if (size_queue_aux (model_queues, queue) != queue_max_size)
 ...

Complete scenario function follows below.
scenario bool enq_scen ()
{
 if (size_queue_aux (model_queues, queue) != queue_max_size)
 iterate (int i = 0; i < queue_items_num; i++;)
 enq_spec (queue, queue_items[i]);
 return true;
}

The function of removing an item from the queue has no parameters that would demand enumer-
ating, however, there is a precondition defined for it, which demands that the queue is nonempty.
So, the scenario function may be defined as follows:

scenario bool deq_scen ()
{
 if (size_queue_aux (model_queues, queue) != 0)
 deq_spec (queue);
 return true;
}

Now, the scenario variable shall be described, with all of the above defined functions to be in-
cluded in it. A scenario variable has the type dfsm and is initialized in the style of C99 standard,
by means of enumerating of the names of the fields and their values. The fields that correspond
to the functions of initialization and finalization of a scenario are called init and finish, re-
spectively. The function of evaluating a generalized state initializes the field getState. The filed

95

Examples of CTesK usage

with the name actions represents an array where the list of scenario functions that finishes with
NULL is contained.

scenario dfsm queue_scenario =
{
 .init = queue_scenario_init,
 .finish = queue_scenario_finish,
 .getState = queue_scenario_state,
 .actions = {empty_scen, enq_scen, deq_scen, NULL}
};

The files containing the test scenario (queue_scen.seh and queue_scen.seс) are represented in
“Appendix A”. These files are also available in the examples/queue folder of the CTesK distri-
bution.

Main function of test
At this point, the function main() that starts execution of the test scenario shall be described.

Prior to run the scenario itself, setting up of mediators should be provided for the specification
functions. To do so, the functions automatically generated out of the specification functions are
used:

set_mediator_create_queue_spec (create_queue_media);
set_mediator_delete_queue_spec (delete_queue_media);
set_mediator_empty_spec (empty_media);
set_mediator_enq_spec (enq_media);
set_mediator_deq_spec (deq_media);

Besides that, a model state shall be created by means of previously defined function
init_state_queue().

init_state_queue ();

In order to run the test scenario, the function with a name which is the same one as the scenario
variable name (queue_scenario in this case) should be invoked by passing to it the command
line options.

queue_scenario (argc, argv);

Complete main() function looks as follows:
void main (int argc, char **argv)
{
 set_mediator_create_queue_spec (create_queue_media);
 set_mediator_delete_queue_spec (delete_queue_media);
 set_mediator_empty_spec (empty_media);
 set_mediator_enq_spec (enq_media);
 set_mediator_deq_spec (deq_media);

 queue_scenario (argc, argv);
}

Building and running test
In order to obtain an executable test, the developed files shall be translated to C, then the files
and a file which contains the implementation, shall be compiled and linked into an executable
module with CTesK libraries.

96

CTesK 2.2 User’s Guide

The resulting executable test is able to trace a report about its completion for further analysis. In
order to ensure that tracing achieves the console, the parameter –tc should be passed to the test.
As the parameter –t followed by the file name indicates that the test tracing shall be directed to
the file specified.

Windows platform
In order to translate the files from SeC to C, the following commands should be executed:

> sec.bat queue_spec.sec queue_spec.c queue_spec.i
> sec.bat queue_media.sec queue_media.c queue_media.i
> sec.bat queue_scen.sec queue_scen.c queue_scen.i
> sec.bat queue_main.sec queue_main.c queue_main.i

Compilation of the resulting C files and the implementation is performed through the following
commands:

> cl.exe /c queue_spec.c
> cl.exe /c queue_media.c
> cl.exe /c queue_scen.c
> cl.exe /c queue_main.c
> cl.exe /c queue.c

Linking of the executable module is performed in the following way:

> link.exe /out:queue_test.exe /libpath:%CTESK_HOME%\lib\win32
queue_spec.obj queue_media.obj queue_scen.obj queue_main.obj
queue.obj atl.lib ts.lib tracer.lib utils.lib

Test run is as follows:

> queue_test.exe –tc –t queue.trace 5 10
To compile and start the test in Microsoft Visual C++® 6.0 environment, a new project of the
type Win32 Console Application shall be created, then the specification files and the files with
the implementation shall be added to it, and the project build shall be initiated (selecting menu
item Build -> Build…).

The command line parameters can be specified in the settings of the project
(Project -> Settings) at the tab Debug. The program shall then be started for execution through
selecting menu item Build -> Execute….

Linux platform
Translation shall be executed in the following way:

% sec.sh queue_spec.sec queue_spec.c
% sec.sh queue_media.sec queue_media.c
% sec.sh queue_scen.sec queue_scen.c
% sec.sh queue_main.sec queue_main.c

Compilation is performed with the following commands:

% gcc -c queue_spec.c
% gcc -c queue_media.c
% gcc -c queue_scen.c
% gcc -c queue_main.c
% gcc –c queue.c

Test linking is performed as follows:

97

Examples of CTesK usage

% gcc –o queue_test –L$CTESK_HOME/lib/linux
queue_spec.o queue_media.o queue_scen.o queue_main.o
queue.o -latl –lts –ltracer –lutils

Start of the test obtained:

% queue_test –tc –t queue.trace 5 10

Report generation and result analysis
The test sends the trace of its execution in the XML format. In order to extract the data on the
test coverage and inconsistencies found between the specification and the implementation out of
the tracing, the trace analyzer is used. For the tracing analyzer, the directory should be specified
where HTML-files with the test report should be generated and where a file that contains the
trace to be analyzed is located.

Windows platform:

ctesk-rg.bat –d report queue.trace
Linux platform:

% ctesk-rg.sh –d report queue.trace
To view the test report, HTML browser should be invoked, and the file index.html from the di-
rectory specified should be opened.

Windows platform:

> explorer report\scenarios.html
Linux platform:

% mozilla report/ scenarios.html
In order to generate and view the test report in Microsoft Visual C++® 6.0 environment, one
shall open a file that contain the test execution trace in the editor window and select menu item
Tools -> CTesK Trace Analyzer.

In the opened window of the browser, the report on all scenarios that have been executed within
the given test will be represented (Figure 30).

98

CTesK 2.2 User’s Guide

Figure 30. General view of the test report.

Following the reference queue_scenario, one may obtain the data about passed states of the
tested queue (Figure 31). The first table contains data on the scenarios executed within the given
test, such as the name, the amount of states and the amount of transitions between the states.
Then, a detailed description follows for transitions for every scenario. For each transition, the
initial state, scenario function with the use of which the transition has been executed, the values
of iteration variables, the statу after the transition, and the amount of executions of the transition
within the scenario operation period, are described.

Figure 31. Test scenario report.

In accordance with the reference All functions, a table is located that contains the data of the
coverage of the tested subsystems (Figure 32). The first column contains the names of the sub-
systems. In respect to each subsystems, the second column contains the coverage criteria defined

99

Examples of CTesK usage

for its specification functions. Within the column branches, the table contains percentage of cov-
erage of branches in respect to each coverage criterion the number of hits to a given branch.

Figure 32 Specification function coverage report.

In accordance with the reference queue, a table is located that contains the data of the coverage
of the tested functions of the queue subsystem.. The first column contains the names of the speci-
fication functions. In respect to each function, the second column contains the coverage criteria
defined for it. Within the column branches, the table contains percentage of coverage of
branches in respect to each coverage criterion and the number of hits to a given branch.

100

CTesK 2.2 User’s Guide

Figure 33 Specification function coverage report.

More details on the function coverage can be found by clicking on its name (Figure 34). The first
column of the appearing table will represent names of coverages, while the second column will
show names of the functionality branches in every coverage criterion, and the third, the number
of hits at the branches. The last table line that corresponds to a coverage criterion contains data
on completion of the criterion, i.e. percentage of coverage by branches and the total number of
invocation of a function.

101

Examples of CTesK usage

Figure 34. Detailed report on specification function coverage.

The given test found no errors, and therefore, there is no data on errors in the report. One may
alter the implementation to demonstrate a report on inconsistencies found. As an example, let us
alter the function enq() so that it places each item to the beginning of the list instead of its end.

...

void enq (struct queue *queue, void *item)
{
 struct queue *q = queue->next;
 queue = queue->next =
 (struct queue *)malloc (sizeof (struct queue));
 queue->item = item;
 queue->next = q;
}

...

Now, the implementation file queue.c should be compiled, the executable module relinked, and
then one should start the test and regenerate the test report (Figure 35).

102

CTesK 2.2 User’s Guide

Figure 35. General view of the report, containing information about failure.

The list of failures appears on the left. The report on each failure contains the following data
(Figure 36):

• Failure type (postcondition violation in this case)

• Failure location in the test trace

• The testing system components where the failure emerges (the scenario name, state, the sce-
nario, and the specification function)

• Parameter and coverage elements values

103

Examples of CTesK usage

Figure 36. Report on found failure.

104

CTesK 2.2 User’s Guide

Appendix A: The code
of the queue test

Implementation

queue.h
#ifndef __queue_h__
#define __queue_h__

struct queue {
 void *item;
 struct queue *next;
};

struct queue *create_queue (void);
void delete_queue (struct queue **queue);

int empty (struct queue *queue);
void enq (struct queue *queue, void *item);
void *deq (struct queue *queue);

#endif / __queue_h__ */

105

Appendix A: The code of the queue test

queue.c
#include "queue.h"
#include <stdlib.h>

struct queue *create_queue (void)
{
 struct queue *q =
 (struct queue *)malloc (sizeof (struct queue));

 q->item = NULL;
 q->next = NULL;

 return q;
}

void delete_queue (struct queue **queue)
{
 while (*queue != NULL) {
 struct queue *q = (*queue)->next;
 free (*queue);
 *queue = q;
 }
 *queue = NULL;
}

int empty (struct queue *queue)
{
 return !queue->next;
}

void enq (struct queue *queue, void *item)
{
 while (queue->next != NULL) queue = queue->next;

 queue = queue->next =
 (struct queue *)malloc (sizeof (struct queue));
 queue->item = item;
 queue->next = NULL;
}

void *deq (struct queue *queue)
{
 void *res;

 struct queue *q = queue->next;
 queue->next = q->next;
 res = q->item;
 free (q);

 return res;
}

106

CTesK 2.2 User’s Guide

Specifications

queue_spec.seh
#ifndef __queue_spec_seh__
#define __queue_spec_seh__

#include <atl/map.h>
#include <atl/list.h>

invariant typedef void *item_t;

extern invariant Map *model_queues;

typedef void *queue_t;

const queue_t null_queue;

specification queue_t create_queue_spec (void)
 updates model_queues;

specification void delete_queue_spec (queue_t *queue)
 updates model_queues;

specification bool empty_spec (queue_t queue)
 reads model_queues;

specification void enq_spec (queue_t queue, item_t item)
 updates model_queues;

specification item_t deq_spec (queue_t queue)
 updates model_queues;

void init_state_queue (void);

specification typedef item_t Item;
specification typedef queue_t Queue;

bool exists_queue_aux (Map *model_queues, queue_t queue);
List *get_queue_aux (Map *model_queues, queue_t queue);
void add_queue_aux(Map *model_queues, queue_t queue, List *list);
void remove_queue_aux (Map *model_queues, queue_t queue);
int size_queue_aux (Map *model_queues, queue_t queue);

void add_last_aux (List *list, item_t item);
item_t remove_first_aux (List *list);

Item *create_item_aux (item_t item);
Queue *create_queue_aux (queue_t queue);

#endif /* __queue_spec_seh__ */

queue_spec.sec
#include "queue_spec.seh"

#pragma SEC subsystem queue "queue"

const queue_t null_queue = NULL;

107

Appendix A: The code of the queue test

specification typedef item_t Item = {};
specification typedef queue_t Queue = {};

invariant (item_t item)
{
 return NULL != item;
}

invariant Map *model_queues;

invariant (model_queues)
{
 return !containsKey_Map (model_queues
 , create (&type_Queue, null_queue)
);
}

specification queue_t create_queue_spec (void)
 updates model_queues
{
 post {
 Map *tmp_map = clone (model_queues);

 if (null_queue == create_queue_spec
 || !exists_queue_aux (model_queues, create_queue_spec)
 || 0 != size_queue_aux (model_queues, create_queue_spec)
 || exists_queue_aux (@ model_queues
 , create_queue_spec
)
)
 return false;

 remove_queue_aux (tmp_map, create_queue_spec);
 return equals (tmp_map, @ model_queues);
 }
}

specification void delete_queue_spec (queue_t *pqueue)
 updates model_queues
{
 pre {
 return null_queue == *pqueue
 || exists_queue_aux (model_queues, *pqueue);
 }
 coverage C {
 if (null_queue == *pqueue) return {null, "null queue"};
 else return {not_null, "non-null queue"};
 }
 post {
 if (coverage (C) == null) {
 return @*pqueue == *pqueue
 && equals (@model_queues, model_queues);
 } else {
 Map *tmp_map = @clone (model_queues);

 remove_queue_aux (tmp_map, @*pqueue);
 return null_queue == *pqueue
 && equals (tmp_map, model_queues);
 }
 }
}

108

CTesK 2.2 User’s Guide

specification bool empty_spec (queue_t queue)
 reads model_queues
{
 pre {
 return null_queue != queue
 && exists_queue_aux (model_queues, queue);
 }
 coverage C {
 if (0 == size_queue_aux (model_queues, queue))
 return {empty, "empty queue"};
 else
 return {not_empty, "non-empty queue"};
 }
 post {
 return empty_spec == (coverage (C) == empty);
 }
}

specification void enq_spec (queue_t queue, item_t item)
 updates model_queues
{
 pre {
 return null_queue != queue
 && exists_queue_aux (model_queues, queue);
 }
 coverage C {
 if (0 == size_queue_aux (model_queues, queue))
 return {empty, "empty queue"};
 else
 return {not_empty, "non-empty queue"};
 }
 post {
 Map *tmp_map = @clone (model_queues);
 List *tmp_list =
 @clone (get_queue_aux (model_queues, queue));

 add_last_aux (tmp_list, item);
 add_queue_aux (tmp_map, queue, tmp_list);

 return equals (tmp_list, get_queue_aux (model_queues, queue))
 && equals (tmp_map, model_queues);
 }
}

specification item_t deq_spec (queue_t queue)
 updates model_queues
{
 pre {
 return null_queue != queue
 && exists_queue_aux (model_queues, queue)
 && 0 < size_queue_aux (model_queues, queue);
 }
 coverage C {
 if (1 == size_queue_aux (model_queues, queue))
 return {last, "last element"};
 else
 return {not_last, "non-last element"};
 }
 post {
 Map *tmp_map = @clone (model_queues);
 List *tmp_list =
 @clone (get_queue_aux (model_queues, queue));
 item_t tmp_item;

109

Appendix A: The code of the queue test

 tmp_item = remove_first_aux (tmp_list);
 add_queue_aux (tmp_map, queue, tmp_list);

 return deq_spec == tmp_item
 && equals (tmp_list, get_queue_aux (model_queues, queue))
 && equals (tmp_map, model_queues);
 }
}

void init_state_queue (void)
{
 model_queues = create (&type_Map, &type_Queue, &type_List);
}

bool exists_queue_aux (Map *model_queues, queue_t queue)
{
 return containsKey_Map(model_queues, create_queue_aux (queue));
}

List *get_queue_aux (Map *model_queues, queue_t queue)
{
 return get_Map (model_queues, create_queue_aux (queue));
}

void add_queue_aux (Map *model_queues, queue_t queue, List *list)
{
 put_Map (model_queues, create_queue_aux (queue), list);
}

void remove_queue_aux (Map *model_queues, queue_t queue)
{
 remove_Map (model_queues, create_queue_aux (queue));
}

int size_queue_aux (Map *model_queues, queue_t queue)
{
 return size_List (get_queue_aux (model_queues, queue));
}

void add_last_aux (List *list, item_t item)
{
 append_List (list, create_item_aux (item));
}

item_t remove_first_aux (List *list)
{
 Item *item = get_List (list, 0);
 remove_List (list, 0);
 return *item;
}

Item *create_item_aux (item_t item)
{
 return create (&type_Item, item);
}

Queue *create_queue_aux (queue_t queue)
{
 return create (&type_Queue, queue);
}

110

CTesK 2.2 User’s Guide

Mediators

queue_media.seh
#ifndef __queue_media_seh__
#define __queue_media_seh__

#include "queue_spec.seh"

mediator create_queue_media for
specification queue_t create_queue_spec (void)
 updates model_queues;

mediator delete_queue_media for
specification void delete_queue_spec (queue_t *queue)
 updates model_queues;

mediator empty_media for
specification bool empty_spec (queue_t queue)
 reads model_queues;

mediator enq_media for
specification void enq_spec (queue_t queue, item_t item)
 updates model_queues;

mediator deq_media for
specification item_t deq_spec (queue_t queue)
 updates model_queues;

#endif /* __queue_media_seh__ */

queue_media.sec
#include "queue_media.seh"
#include "queue.h"

static List *queue_to_list (queue_t queue)
{
 struct queue *q;
 List *model;

 if (null_queue == queue) return NULL;

 q = ((struct queue *)queue)->next;
 model = create (&type_List, &type_Item);

 while (NULL != q) {
 append_List (model, create_item_aux (q->item));
 q = q->next;
 }

 return model;
}

void queue_map_state_up (void)
{
 int qi;
 Map *old_model_queues = model_queues;

111

Appendix A: The code of the queue test

 model_queues = create (&type_Map, &type_Queue, &type_List);

 for (qi = 0; qi < size_Map (old_model_queues); qi++) {
 Queue *q = key_Map (old_model_queues, qi);
 put_Map (model_queues, q, queue_to_list (*q));
 }
}

mediator create_queue_media for
specification queue_t create_queue_spec (void)
 updates model_queues
{
 call {
 return (queue_t)create_queue ();
 }
 state {
 queue_map_state_up ();
 add_queue_aux (model_queues
 , create_queue_spec
 , queue_to_list (create_queue_spec)
);
 }
}

mediator delete_queue_media for
specification void delete_queue_spec (queue_t *queue)
 updates model_queues
{
 queue_t tmp_queue = *queue;
 call {
 delete_queue ((struct queue **)queue);
 }
 state {
 remove_queue_aux (model_queues, tmp_queue);
 queue_map_state_up ();
 }
}

mediator empty_media for
specification bool empty_spec (queue_t queue)
 reads model_queues
{
 call {
 return empty ((struct queue *)queue) ? true : false;
 }
 state {
 queue_map_state_up ();
 }
}

mediator enq_media for
specification void enq_spec(queue_t queue, item_t item)
 updates model_queues
{
 call {
 enq ((struct queue *)queue, item);
 }
 state {
 queue_map_state_up ();
 }
}

112

CTesK 2.2 User’s Guide

mediator deq_media for
specification item_t deq_spec(queue_t queue)
 updates model_queues
{
 call {
 return deq ((struct queue *)queue);
 }
 state {
 queue_map_state_up ();
 }
}

Scenarios

queue_scen.seh
#ifndef __queue_scen_h__
#define __queue_scen_h__

extern scenario dfsm queue_scenario;

#endif /* __queue_scen_h__ */

queue_scen.sec
#include "queue_scen.seh"
#include "queue_spec.seh"
#include <atl/integer.h>

static int queue_max_size = 10;

static int queue_items_num = 20;
static item_t *queue_items;

static queue_t queue;

bool queue_scenario_init (int argc, char **argv)
{
 int i;

 if (argc > 1) queue_max_size = atoi (argv[1]);
 if (argc > 2) queue_items_num = atoi (argv[2]);

 queue_items =
 (item_t *)calloc (queue_items_num, sizeof (item_t));
 for (i = 0; i < queue_items_num; i++)
 queue_items[i] = malloc (i);

 queue = create_queue_spec ();

 return true;
}

void queue_scenario_finish ()
{

113

Appendix A: The code of the queue test

 int i;

 delete_queue_spec (&queue);

 for (i = 0; i < queue_items_num; i++)
 free (queue_items[i]);
 free (queue_items);
}

Object *queue_scenario_state ()
{
 return create (&type_Integer
 , size_queue_aux (model_queues, queue)
);
}

scenario bool empty_scen ()
{
 empty_spec (queue);
 return true;
}

scenario bool enq_scen ()
{
 if (size_queue_aux (model_queues, queue) != queue_max_size)
 iterate (int i = 0; i < queue_items_num; i++;)
 enq_spec (queue, queue_items[i]);
 return true;
}

scenario bool deq_scen ()
{
 if (size_queue_aux (model_queues, queue) != 0)
 deq_spec (queue);
 return true;
}

scenario dfsm queue_scenario =
{
 .init = queue_scenario_init,
 .finish = queue_scenario_finish,
 .getState = queue_scenario_state,
 .actions = {empty_scen, enq_scen, deq_scen, NULL}
};

114

CTesK 2.2 User’s Guide

Function main

queue_main.sec
#include "queue_spec.seh"
#include "queue_media.seh"
#include "queue_scen.seh"

void main (int argc, char **argv)
{
 set_mediator_create_queue_spec (create_queue_media);
 set_mediator_delete_queue_spec (delete_queue_media);
 set_mediator_empty_spec (empty_media);
 set_mediator_enq_spec (enq_media);
 set_mediator_deq_spec (deq_media);

 init_state_queue ();

 queue_scenario (argc, argv);
}

115

	Introduction
	What is CTesK
	UniTesK technology
	UniTesK implementation in CTesK

	What is contained in the document
	Other documents
	Conventions

	SeC language
	General information
	Data types
	SeC allowable types
	Specification data types
	Function of reference creation
	Functions copying values by references
	Functions comparing values by references
	Function stringifying value by reference

	Creating new specification types
	Function of initialization by default
	Function of copying by default
	Function of comparison by default
	Function of stringifying by default
	Function of enumeration of inner specification references by
	Function deallocating resources by default
	Function of initialization of specification type
	Function deallocating resources of specification type
	Function of copying specification type
	Function of comparing specification type
	Function of stringifying specification type
	Function of enumeration of inner specification references of

	Invariants
	Type invariant
	Variable invariant

	Specifications
	Specification functions
	Deferred reactions
	Access constraints
	Precondition
	Coverage criterion
	Postcondition

	Mediators
	Mediator function
	Call-block
	State-block

	Catcher

	Scenarios
	Scenario function
	Iteration statement
	Iteration by coverage criterion

	Scenario state variables

	Function of evaluating scenario state
	Function of determining state stationarity
	Function of saving model state
	Function of restoring model state
	Function of initialization
	Function of finalization
	Scenario variable

	Tests translation and building
	SEC files translation
	Standard macrodefinitions
	CTesK libraries

	Analysis of test results and test debugging
	Test trace
	Messages
	Tracing control

	Static reports
	Scenarios
	Specification functions
	Errors

	Analysis of results
	Error search
	Postcondition violation
	Violation of the invariant or access constraint
	State graph non-determination
	Violation of strong connectivity of the graph of states
	Error during initialization
	Internal and user errors

	Coverage completeness analysis

	Using CTesK in Microsoft Visual C++® 6.0
	Project definition
	Mediator development
	Test scenario development
	Running test
	Test report generation
	Debugging test

	Examples of CTesK usage
	Systems that provide API
	Description of the target system interface
	Specification development
	Specification model of data
	Queue element
	Queue
	Set of the queues created
	The value denoting the queue emptiness

	Specification of behavior
	Queue creation function

	Queue deletion function
	Queue emptiness check function
	Element addition function
	Element removing function

	Development of mediator functions
	Development of test scenario
	Main function of test
	Building and running test
	Windows platform
	Linux platform

	Report generation and result analysis

	Appendix A: The code of the queue test
	Implementation
	queue.h
	queue.c

	Specifications
	queue_spec.seh
	queue_spec.sec

	Mediators
	queue_media.seh
	queue_media.sec

	Scenarios
	queue_scen.seh
	queue_scen.sec

	Function main
	queue_main.sec

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

